Normalized defining polynomial
\( x^{26} - 11 x^{25} - 33 x^{24} + 732 x^{23} - 650 x^{22} - 18660 x^{21} + 43660 x^{20} + 233157 x^{19} - 794597 x^{18} - 1483913 x^{17} + 7250271 x^{16} + 4114140 x^{15} - 37710724 x^{14} + 2064770 x^{13} + 117022908 x^{12} - 43965313 x^{11} - 218101734 x^{10} + 114942028 x^{9} + 236602449 x^{8} - 131092304 x^{7} - 136303988 x^{6} + 61867022 x^{5} + 33037124 x^{4} - 5737562 x^{3} - 1480706 x^{2} - 57707 x + 529 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73094458047088417407552639076238127506405695058400788893=13^{13}\cdot 53^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(689=13\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{689}(1,·)$, $\chi_{689}(66,·)$, $\chi_{689}(259,·)$, $\chi_{689}(261,·)$, $\chi_{689}(311,·)$, $\chi_{689}(519,·)$, $\chi_{689}(584,·)$, $\chi_{689}(521,·)$, $\chi_{689}(651,·)$, $\chi_{689}(77,·)$, $\chi_{689}(142,·)$, $\chi_{689}(365,·)$, $\chi_{689}(599,·)$, $\chi_{689}(664,·)$, $\chi_{689}(155,·)$, $\chi_{689}(222,·)$, $\chi_{689}(415,·)$, $\chi_{689}(545,·)$, $\chi_{689}(625,·)$, $\chi_{689}(493,·)$, $\chi_{689}(558,·)$, $\chi_{689}(417,·)$, $\chi_{689}(116,·)$, $\chi_{689}(649,·)$, $\chi_{689}(248,·)$, $\chi_{689}(183,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23} a^{15} - \frac{10}{23} a^{14} - \frac{2}{23} a^{13} - \frac{5}{23} a^{12} - \frac{3}{23} a^{11} + \frac{9}{23} a^{10} - \frac{11}{23} a^{9} - \frac{11}{23} a^{8} + \frac{4}{23} a^{7} + \frac{3}{23} a^{6} + \frac{6}{23} a^{5} + \frac{11}{23} a^{4} + \frac{4}{23} a^{3} - \frac{2}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{23} a^{16} - \frac{10}{23} a^{14} - \frac{2}{23} a^{13} - \frac{7}{23} a^{12} + \frac{2}{23} a^{11} + \frac{10}{23} a^{10} - \frac{6}{23} a^{9} + \frac{9}{23} a^{8} - \frac{3}{23} a^{7} - \frac{10}{23} a^{6} + \frac{2}{23} a^{5} - \frac{1}{23} a^{4} - \frac{8}{23} a^{3} - \frac{1}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{23} a^{17} - \frac{10}{23} a^{14} - \frac{4}{23} a^{13} - \frac{2}{23} a^{12} + \frac{3}{23} a^{11} - \frac{8}{23} a^{10} - \frac{9}{23} a^{9} + \frac{2}{23} a^{8} + \frac{7}{23} a^{7} + \frac{9}{23} a^{6} - \frac{10}{23} a^{5} + \frac{10}{23} a^{4} - \frac{7}{23} a^{3} + \frac{9}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{23} a^{18} + \frac{11}{23} a^{14} + \frac{1}{23} a^{13} - \frac{1}{23} a^{12} + \frac{8}{23} a^{11} - \frac{11}{23} a^{10} + \frac{7}{23} a^{9} - \frac{11}{23} a^{8} + \frac{3}{23} a^{7} - \frac{3}{23} a^{6} + \frac{1}{23} a^{5} + \frac{11}{23} a^{4} + \frac{3}{23} a^{3} + \frac{9}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{23} a^{19} - \frac{4}{23} a^{14} - \frac{2}{23} a^{13} - \frac{6}{23} a^{12} - \frac{1}{23} a^{11} - \frac{5}{23} a^{9} + \frac{9}{23} a^{8} - \frac{1}{23} a^{7} - \frac{9}{23} a^{6} - \frac{9}{23} a^{5} - \frac{3}{23} a^{4} + \frac{11}{23} a^{3} + \frac{5}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{23} a^{20} + \frac{4}{23} a^{14} + \frac{9}{23} a^{13} + \frac{2}{23} a^{12} + \frac{11}{23} a^{11} + \frac{8}{23} a^{10} + \frac{11}{23} a^{9} + \frac{1}{23} a^{8} + \frac{7}{23} a^{7} + \frac{3}{23} a^{6} - \frac{2}{23} a^{5} + \frac{9}{23} a^{4} - \frac{2}{23} a^{3} - \frac{10}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{23} a^{21} + \frac{3}{23} a^{14} + \frac{10}{23} a^{13} + \frac{8}{23} a^{12} - \frac{3}{23} a^{11} - \frac{2}{23} a^{10} - \frac{1}{23} a^{9} + \frac{5}{23} a^{8} + \frac{10}{23} a^{7} + \frac{9}{23} a^{6} + \frac{8}{23} a^{5} - \frac{3}{23} a^{3} - \frac{8}{23} a^{2} - \frac{7}{23} a$, $\frac{1}{23} a^{22} - \frac{6}{23} a^{14} - \frac{9}{23} a^{13} - \frac{11}{23} a^{12} + \frac{7}{23} a^{11} - \frac{5}{23} a^{10} - \frac{8}{23} a^{9} - \frac{3}{23} a^{8} - \frac{3}{23} a^{7} - \frac{1}{23} a^{6} + \frac{5}{23} a^{5} + \frac{10}{23} a^{4} + \frac{3}{23} a^{3} - \frac{1}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{529} a^{23} - \frac{9}{529} a^{22} - \frac{1}{529} a^{21} + \frac{5}{529} a^{20} - \frac{9}{529} a^{19} - \frac{6}{529} a^{18} + \frac{9}{529} a^{17} - \frac{9}{529} a^{16} - \frac{4}{529} a^{15} + \frac{196}{529} a^{14} + \frac{72}{529} a^{13} - \frac{188}{529} a^{12} - \frac{7}{23} a^{11} + \frac{116}{529} a^{10} + \frac{10}{529} a^{9} - \frac{168}{529} a^{8} + \frac{255}{529} a^{7} - \frac{26}{529} a^{6} + \frac{64}{529} a^{5} + \frac{17}{529} a^{4} + \frac{141}{529} a^{3} - \frac{218}{529} a^{2} - \frac{6}{23} a$, $\frac{1}{2111564598971} a^{24} + \frac{1053491383}{2111564598971} a^{23} - \frac{28207289703}{2111564598971} a^{22} + \frac{30363100346}{2111564598971} a^{21} - \frac{1098020680}{2111564598971} a^{20} - \frac{43038266870}{2111564598971} a^{19} - \frac{1776702498}{91807156477} a^{18} + \frac{43740281342}{2111564598971} a^{17} - \frac{41682817068}{2111564598971} a^{16} + \frac{1380885690}{2111564598971} a^{15} - \frac{854969523887}{2111564598971} a^{14} - \frac{550247058553}{2111564598971} a^{13} - \frac{988872795792}{2111564598971} a^{12} + \frac{524897678302}{2111564598971} a^{11} - \frac{31520058047}{91807156477} a^{10} + \frac{382729795616}{2111564598971} a^{9} + \frac{959003614202}{2111564598971} a^{8} - \frac{12917763996}{91807156477} a^{7} - \frac{1024134721407}{2111564598971} a^{6} + \frac{689061777213}{2111564598971} a^{5} - \frac{434773468952}{2111564598971} a^{4} - \frac{360724619318}{2111564598971} a^{3} - \frac{649562827086}{2111564598971} a^{2} + \frac{42272953455}{91807156477} a - \frac{266597606}{3991615499}$, $\frac{1}{119965369551431639360592667068915186067799950058520858184799} a^{25} + \frac{22357031479443531470538872744169623791593683816}{119965369551431639360592667068915186067799950058520858184799} a^{24} + \frac{58239774368824946635770649636972129500784945716317372716}{119965369551431639360592667068915186067799950058520858184799} a^{23} + \frac{102013629059568232566022445797506578477444342154317959596}{119965369551431639360592667068915186067799950058520858184799} a^{22} - \frac{964638863056285893856652280707335363699982566347632311672}{119965369551431639360592667068915186067799950058520858184799} a^{21} - \frac{1887166426384767400131005320030347540886840439349580512488}{119965369551431639360592667068915186067799950058520858184799} a^{20} + \frac{706780303322175618710176816778636795989102769962208491376}{119965369551431639360592667068915186067799950058520858184799} a^{19} + \frac{2322878184300948911675856437691108249906623556613503502810}{119965369551431639360592667068915186067799950058520858184799} a^{18} + \frac{1310578157357527142256504210382308786294454374813889378833}{119965369551431639360592667068915186067799950058520858184799} a^{17} - \frac{847720212309869126798402904834152569670652988386758649911}{119965369551431639360592667068915186067799950058520858184799} a^{16} - \frac{838797245600377769884557156585726572394387721566610420606}{119965369551431639360592667068915186067799950058520858184799} a^{15} - \frac{20455017110426597722811789186718348310679505569898802510464}{119965369551431639360592667068915186067799950058520858184799} a^{14} + \frac{25749973914242473185880855662011378591283669934374759977840}{119965369551431639360592667068915186067799950058520858184799} a^{13} + \frac{53333475241515195249459156502382024140028371169922528271140}{119965369551431639360592667068915186067799950058520858184799} a^{12} + \frac{27416538454327470359395802245887244043052343774567930557664}{119965369551431639360592667068915186067799950058520858184799} a^{11} - \frac{19169066743810813228156872474865675825796488027028386427567}{119965369551431639360592667068915186067799950058520858184799} a^{10} + \frac{56521137888358064153109434274418571174302008647431017131068}{119965369551431639360592667068915186067799950058520858184799} a^{9} - \frac{56650990579658954447725279634528561926564771528149580502810}{119965369551431639360592667068915186067799950058520858184799} a^{8} + \frac{43845782002337848918755639365540540022441122645463083120393}{119965369551431639360592667068915186067799950058520858184799} a^{7} - \frac{1488188064058087236188725837928429450572459522433961069034}{119965369551431639360592667068915186067799950058520858184799} a^{6} + \frac{11315300611766829469477210390700569819904460320500997426646}{119965369551431639360592667068915186067799950058520858184799} a^{5} - \frac{35117687087269348462567715598150562486966122534968889060739}{119965369551431639360592667068915186067799950058520858184799} a^{4} + \frac{44571312955255280953926902601886248175748466196205797858433}{119965369551431639360592667068915186067799950058520858184799} a^{3} + \frac{33727197867559896088078885882512451312813101408569258221776}{119965369551431639360592667068915186067799950058520858184799} a^{2} - \frac{2076912428541775367251864532498465727652990307784525805760}{5215885632670940841764898568213703742078258698196559051513} a + \frac{107969964778025863290703429305627231435268110149554072065}{226777636203084384424560807313639293133837334704198219631}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104723787342670040000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | R | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $53$ | 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |
| 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ | |