Normalized defining polynomial
\( x^{26} - 106 x^{24} + 4664 x^{22} - 111512 x^{20} + 1594240 x^{18} - 14158208 x^{16} + 78704576 x^{14} - 269446912 x^{12} + 546193408 x^{10} - 619053568 x^{8} + 373879808 x^{6} - 109195264 x^{4} + 12156928 x^{2} - 434176 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7031800987227722369373364916066015457209470483519504384=2^{39}\cdot 53^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(424=2^{3}\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{424}(1,·)$, $\chi_{424}(325,·)$, $\chi_{424}(225,·)$, $\chi_{424}(201,·)$, $\chi_{424}(269,·)$, $\chi_{424}(417,·)$, $\chi_{424}(81,·)$, $\chi_{424}(37,·)$, $\chi_{424}(149,·)$, $\chi_{424}(281,·)$, $\chi_{424}(153,·)$, $\chi_{424}(29,·)$, $\chi_{424}(197,·)$, $\chi_{424}(289,·)$, $\chi_{424}(229,·)$, $\chi_{424}(165,·)$, $\chi_{424}(97,·)$, $\chi_{424}(169,·)$, $\chi_{424}(237,·)$, $\chi_{424}(93,·)$, $\chi_{424}(221,·)$, $\chi_{424}(49,·)$, $\chi_{424}(117,·)$, $\chi_{424}(89,·)$, $\chi_{424}(121,·)$, $\chi_{424}(317,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{2944} a^{14} + \frac{11}{1472} a^{12} + \frac{5}{736} a^{10} + \frac{7}{368} a^{8} + \frac{9}{184} a^{6} + \frac{11}{92} a^{4} + \frac{9}{46} a^{2} + \frac{1}{23}$, $\frac{1}{2944} a^{15} + \frac{11}{1472} a^{13} + \frac{5}{736} a^{11} + \frac{7}{368} a^{9} + \frac{9}{184} a^{7} + \frac{11}{92} a^{5} + \frac{9}{46} a^{3} + \frac{1}{23} a$, $\frac{1}{5888} a^{16} - \frac{1}{1472} a^{12} - \frac{1}{368} a^{10} + \frac{1}{368} a^{8} + \frac{1}{46} a^{6} + \frac{3}{92} a^{4} - \frac{3}{23} a^{2} - \frac{11}{23}$, $\frac{1}{5888} a^{17} - \frac{1}{1472} a^{13} - \frac{1}{368} a^{11} + \frac{1}{368} a^{9} + \frac{1}{46} a^{7} + \frac{3}{92} a^{5} - \frac{3}{23} a^{3} - \frac{11}{23} a$, $\frac{1}{11776} a^{18} + \frac{9}{1472} a^{12} + \frac{3}{368} a^{10} + \frac{11}{368} a^{8} - \frac{11}{184} a^{6} + \frac{5}{92} a^{4} - \frac{1}{23} a^{2} + \frac{1}{23}$, $\frac{1}{11776} a^{19} + \frac{9}{1472} a^{13} + \frac{3}{368} a^{11} + \frac{11}{368} a^{9} - \frac{11}{184} a^{7} + \frac{5}{92} a^{5} - \frac{1}{23} a^{3} + \frac{1}{23} a$, $\frac{1}{23552} a^{20} - \frac{1}{1472} a^{12} - \frac{11}{736} a^{10} - \frac{5}{368} a^{8} - \frac{7}{184} a^{6} - \frac{9}{92} a^{4} - \frac{11}{46} a^{2} - \frac{9}{23}$, $\frac{1}{23552} a^{21} - \frac{1}{1472} a^{13} - \frac{11}{736} a^{11} - \frac{5}{368} a^{9} - \frac{7}{184} a^{7} - \frac{9}{92} a^{5} - \frac{11}{46} a^{3} - \frac{9}{23} a$, $\frac{1}{47104} a^{22} + \frac{1}{23}$, $\frac{1}{47104} a^{23} + \frac{1}{23} a$, $\frac{1}{3907081309054604177408} a^{24} + \frac{5951976017765939}{1953540654527302088704} a^{22} + \frac{1700136931200745}{488385163631825522176} a^{20} - \frac{9619312240139629}{488385163631825522176} a^{18} - \frac{3891034132342681}{244192581815912761088} a^{16} - \frac{6025801841851293}{122096290907956380544} a^{14} - \frac{79018636391865715}{15262036363494547568} a^{12} + \frac{174146851571098595}{15262036363494547568} a^{10} - \frac{124477184844099589}{15262036363494547568} a^{8} + \frac{139786812110216495}{7631018181747273784} a^{6} - \frac{24272471791520089}{1907754545436818446} a^{4} + \frac{114421393965312554}{953877272718409223} a^{2} + \frac{119300292076422685}{953877272718409223}$, $\frac{1}{3907081309054604177408} a^{25} + \frac{5951976017765939}{1953540654527302088704} a^{23} + \frac{1700136931200745}{488385163631825522176} a^{21} - \frac{9619312240139629}{488385163631825522176} a^{19} - \frac{3891034132342681}{244192581815912761088} a^{17} - \frac{6025801841851293}{122096290907956380544} a^{15} - \frac{79018636391865715}{15262036363494547568} a^{13} + \frac{174146851571098595}{15262036363494547568} a^{11} - \frac{124477184844099589}{15262036363494547568} a^{9} + \frac{139786812110216495}{7631018181747273784} a^{7} - \frac{24272471791520089}{1907754545436818446} a^{5} + \frac{114421393965312554}{953877272718409223} a^{3} + \frac{119300292076422685}{953877272718409223} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5192842746653208000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{106}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | $26$ | $26$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | R | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 53 | Data not computed | ||||||