Normalized defining polynomial
\( x^{26} - 131 x^{24} + 6812 x^{22} - 182745 x^{20} + 2784143 x^{18} - 25376141 x^{16} + 143325004 x^{14} - 509684058 x^{12} + 1135945802 x^{10} - 1544541090 x^{8} + 1210493317 x^{6} - 484104605 x^{4} + 71742543 x^{2} - 487451 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5735381071083349848637397344247707950917141114970532021796864=2^{26}\cdot 131^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(524=2^{2}\cdot 131\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{524}(1,·)$, $\chi_{524}(331,·)$, $\chi_{524}(453,·)$, $\chi_{524}(199,·)$, $\chi_{524}(79,·)$, $\chi_{524}(523,·)$, $\chi_{524}(45,·)$, $\chi_{524}(19,·)$, $\chi_{524}(473,·)$, $\chi_{524}(155,·)$, $\chi_{524}(477,·)$, $\chi_{524}(479,·)$, $\chi_{524}(163,·)$, $\chi_{524}(325,·)$, $\chi_{524}(113,·)$, $\chi_{524}(361,·)$, $\chi_{524}(193,·)$, $\chi_{524}(71,·)$, $\chi_{524}(301,·)$, $\chi_{524}(47,·)$, $\chi_{524}(369,·)$, $\chi_{524}(51,·)$, $\chi_{524}(505,·)$, $\chi_{524}(223,·)$, $\chi_{524}(411,·)$, $\chi_{524}(445,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{61} a^{19} + \frac{29}{61} a^{17} - \frac{18}{61} a^{15} - \frac{8}{61} a^{13} + \frac{1}{61} a^{11} + \frac{14}{61} a^{9} + \frac{6}{61} a^{7} - \frac{14}{61} a^{5} + \frac{21}{61} a^{3} - \frac{5}{61} a$, $\frac{1}{3233} a^{20} - \frac{1435}{3233} a^{18} + \frac{165}{3233} a^{16} + \frac{785}{3233} a^{14} + \frac{611}{3233} a^{12} + \frac{746}{3233} a^{10} + \frac{921}{3233} a^{8} - \frac{1539}{3233} a^{6} - \frac{223}{3233} a^{4} + \frac{1337}{3233} a^{2} + \frac{21}{53}$, $\frac{1}{3233} a^{21} - \frac{4}{3233} a^{19} - \frac{365}{3233} a^{17} + \frac{891}{3233} a^{15} - \frac{1138}{3233} a^{13} - \frac{1056}{3233} a^{11} + \frac{1557}{3233} a^{9} + \frac{581}{3233} a^{7} - \frac{859}{3233} a^{5} - \frac{942}{3233} a^{3} + \frac{592}{3233} a$, $\frac{1}{3233} a^{22} + \frac{361}{3233} a^{18} + \frac{1551}{3233} a^{16} - \frac{1231}{3233} a^{14} + \frac{1388}{3233} a^{12} + \frac{1308}{3233} a^{10} + \frac{1032}{3233} a^{8} - \frac{9}{53} a^{6} + \frac{1399}{3233} a^{4} - \frac{526}{3233} a^{2} - \frac{22}{53}$, $\frac{1}{3233} a^{23} - \frac{10}{3233} a^{19} + \frac{491}{3233} a^{17} - \frac{1019}{3233} a^{15} + \frac{1123}{3233} a^{13} + \frac{937}{3233} a^{11} - \frac{929}{3233} a^{9} + \frac{458}{3233} a^{7} + \frac{127}{3233} a^{5} + \frac{1382}{3233} a^{3} + \frac{513}{3233} a$, $\frac{1}{3582728933281103016202342024330513304136659} a^{24} + \frac{540815178205352027042403993688378088292}{3582728933281103016202342024330513304136659} a^{22} + \frac{299670385028762930815262407062024749154}{3582728933281103016202342024330513304136659} a^{20} - \frac{182304914667665090123007295824569101454807}{3582728933281103016202342024330513304136659} a^{18} - \frac{414689724408535729744848398832034820241042}{3582728933281103016202342024330513304136659} a^{16} + \frac{642900840919561253161734621906487691769202}{3582728933281103016202342024330513304136659} a^{14} + \frac{393552372555690350130396627550851475060921}{3582728933281103016202342024330513304136659} a^{12} - \frac{670537112026538006576573261367650857353797}{3582728933281103016202342024330513304136659} a^{10} + \frac{1508201529137378139898123423469340881797384}{3582728933281103016202342024330513304136659} a^{8} - \frac{225233072294797018015392585668194491724694}{3582728933281103016202342024330513304136659} a^{6} + \frac{147998683895603772609521990752885902714238}{3582728933281103016202342024330513304136659} a^{4} - \frac{1549245086026672407887863359775691111191102}{3582728933281103016202342024330513304136659} a^{2} - \frac{18451572757930587129254299734202897558209}{58733261201329557642661344661155955805519}$, $\frac{1}{3582728933281103016202342024330513304136659} a^{25} + \frac{540815178205352027042403993688378088292}{3582728933281103016202342024330513304136659} a^{23} + \frac{299670385028762930815262407062024749154}{3582728933281103016202342024330513304136659} a^{21} - \frac{6105131063676417195023261841101234038250}{3582728933281103016202342024330513304136659} a^{19} + \frac{1112375066826032768964346562358020030702452}{3582728933281103016202342024330513304136659} a^{17} + \frac{1054033669328868156660364034534579382407835}{3582728933281103016202342024330513304136659} a^{15} - \frac{1016045896276219033293475644316891464271535}{3582728933281103016202342024330513304136659} a^{13} - \frac{494337328422549333648589227384182989937240}{3582728933281103016202342024330513304136659} a^{11} + \frac{392269566312116544687557874907377721492523}{3582728933281103016202342024330513304136659} a^{9} + \frac{831965629329135019552511618232612712774648}{3582728933281103016202342024330513304136659} a^{7} + \frac{1263930646720865367820087539314849063019099}{3582728933281103016202342024330513304136659} a^{5} - \frac{1431778563624013292602540670453379199580064}{3582728933281103016202342024330513304136659} a^{3} + \frac{1576184077027393836677909570626797216003125}{3582728933281103016202342024330513304136659} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24334596273964407000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{131}) \), 13.13.25542038069936263923006961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $26$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{26}$ | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 131 | Data not computed | ||||||