Normalized defining polynomial
\( x^{26} - x^{25} - 77 x^{24} - 31 x^{23} + 2487 x^{22} + 4025 x^{21} - 40490 x^{20} - 113646 x^{19} + 311697 x^{18} + 1465307 x^{17} - 437386 x^{16} - 9437473 x^{15} - 9071733 x^{14} + 27660187 x^{13} + 59401398 x^{12} - 12621780 x^{11} - 138127674 x^{10} - 102611855 x^{9} + 97930228 x^{8} + 182685173 x^{7} + 55690317 x^{6} - 69761804 x^{5} - 68803449 x^{4} - 22484313 x^{3} - 1571682 x^{2} + 586590 x + 89293 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(439798347913742167434960513305495870460482985171691677=3^{13}\cdot 79^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(237=3\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{237}(64,·)$, $\chi_{237}(1,·)$, $\chi_{237}(67,·)$, $\chi_{237}(196,·)$, $\chi_{237}(71,·)$, $\chi_{237}(137,·)$, $\chi_{237}(10,·)$, $\chi_{237}(140,·)$, $\chi_{237}(14,·)$, $\chi_{237}(17,·)$, $\chi_{237}(22,·)$, $\chi_{237}(215,·)$, $\chi_{237}(220,·)$, $\chi_{237}(223,·)$, $\chi_{237}(97,·)$, $\chi_{237}(227,·)$, $\chi_{237}(100,·)$, $\chi_{237}(166,·)$, $\chi_{237}(41,·)$, $\chi_{237}(170,·)$, $\chi_{237}(236,·)$, $\chi_{237}(173,·)$, $\chi_{237}(46,·)$, $\chi_{237}(52,·)$, $\chi_{237}(185,·)$, $\chi_{237}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{71478321117840575353002064443565153832319315874105957} a^{25} + \frac{7476761018254716809477131567519648534588753713004717}{71478321117840575353002064443565153832319315874105957} a^{24} - \frac{8344387611319691510352349274710586036837504462346588}{71478321117840575353002064443565153832319315874105957} a^{23} - \frac{8962128680400321866296844642733074958230743144054849}{71478321117840575353002064443565153832319315874105957} a^{22} + \frac{26407251837399988664967572687805747612835021882147901}{71478321117840575353002064443565153832319315874105957} a^{21} + \frac{34245118702357946289340549163771845783600907212704698}{71478321117840575353002064443565153832319315874105957} a^{20} + \frac{24236406082006017417886089784777556846336787876517016}{71478321117840575353002064443565153832319315874105957} a^{19} + \frac{14421616362708225355493388912717127775813232722791348}{71478321117840575353002064443565153832319315874105957} a^{18} + \frac{22219788406764866544216505445381704305370491251464926}{71478321117840575353002064443565153832319315874105957} a^{17} - \frac{21895055141656985480592621345372930153733740233971222}{71478321117840575353002064443565153832319315874105957} a^{16} - \frac{14812588260971991619794938727517944453940054215187788}{71478321117840575353002064443565153832319315874105957} a^{15} + \frac{24697235714269640143671471770492859496958500313156087}{71478321117840575353002064443565153832319315874105957} a^{14} + \frac{26226163822408209136171684149146321588879610131277883}{71478321117840575353002064443565153832319315874105957} a^{13} + \frac{31088694037304016655945674525541789582033119332065988}{71478321117840575353002064443565153832319315874105957} a^{12} + \frac{21884774725600228877593264316090514594664312086573972}{71478321117840575353002064443565153832319315874105957} a^{11} - \frac{34857595447277816415526877978635161735837216471383496}{71478321117840575353002064443565153832319315874105957} a^{10} - \frac{19259566504395234290957710150024885689907335734353154}{71478321117840575353002064443565153832319315874105957} a^{9} - \frac{12724903981680728928788211909464457227258314171221151}{71478321117840575353002064443565153832319315874105957} a^{8} + \frac{2668561916673541468163597774276253617679412745276359}{71478321117840575353002064443565153832319315874105957} a^{7} - \frac{1607572692402525331261996027269696228386853052843452}{71478321117840575353002064443565153832319315874105957} a^{6} - \frac{16342478368359524520550526296044262427741445426395486}{71478321117840575353002064443565153832319315874105957} a^{5} + \frac{28204925227119770134409078667952400012951015299839210}{71478321117840575353002064443565153832319315874105957} a^{4} - \frac{18180774065732386622057773291355140077755721147510181}{71478321117840575353002064443565153832319315874105957} a^{3} - \frac{33027685846000803998387156454415643355501851746986002}{71478321117840575353002064443565153832319315874105957} a^{2} - \frac{4321993611788332956907558538513589179307714567329082}{71478321117840575353002064443565153832319315874105957} a + \frac{8477010171817637250911986237792619175807422402571479}{71478321117840575353002064443565153832319315874105957}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2262965364986346500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{237}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | R | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 79 | Data not computed | ||||||