Normalized defining polynomial
\( x^{26} - 11 x^{25} - 31 x^{24} + 616 x^{23} + 162 x^{22} - 15056 x^{21} + 4190 x^{20} + 209025 x^{19} - 58361 x^{18} - 1788553 x^{17} + 140843 x^{16} + 9584292 x^{15} + 1790481 x^{14} - 31294019 x^{13} - 14262346 x^{12} + 57442428 x^{11} + 40567618 x^{10} - 49003867 x^{9} - 46847964 x^{8} + 10936597 x^{7} + 15898634 x^{6} - 1051271 x^{5} - 2127423 x^{4} + 177547 x^{3} + 104206 x^{2} - 17478 x + 631 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4262459321296958211564292098551086834037153907470703125=5^{13}\cdot 79^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(395=5\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{395}(64,·)$, $\chi_{395}(1,·)$, $\chi_{395}(131,·)$, $\chi_{395}(324,·)$, $\chi_{395}(326,·)$, $\chi_{395}(204,·)$, $\chi_{395}(141,·)$, $\chi_{395}(334,·)$, $\chi_{395}(144,·)$, $\chi_{395}(146,·)$, $\chi_{395}(259,·)$, $\chi_{395}(21,·)$, $\chi_{395}(89,·)$, $\chi_{395}(176,·)$, $\chi_{395}(196,·)$, $\chi_{395}(159,·)$, $\chi_{395}(289,·)$, $\chi_{395}(354,·)$, $\chi_{395}(101,·)$, $\chi_{395}(166,·)$, $\chi_{395}(299,·)$, $\chi_{395}(301,·)$, $\chi_{395}(46,·)$, $\chi_{395}(304,·)$, $\chi_{395}(179,·)$, $\chi_{395}(381,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{23} a^{20} - \frac{11}{23} a^{19} - \frac{4}{23} a^{18} + \frac{1}{23} a^{17} - \frac{8}{23} a^{16} - \frac{9}{23} a^{15} + \frac{8}{23} a^{14} + \frac{3}{23} a^{13} + \frac{10}{23} a^{11} + \frac{3}{23} a^{10} - \frac{11}{23} a^{9} + \frac{5}{23} a^{8} + \frac{8}{23} a^{7} - \frac{2}{23} a^{6} + \frac{2}{23} a^{5} + \frac{6}{23} a^{4} - \frac{4}{23} a^{3} + \frac{11}{23} a^{2} + \frac{7}{23} a + \frac{8}{23}$, $\frac{1}{23} a^{21} - \frac{10}{23} a^{19} + \frac{3}{23} a^{18} + \frac{3}{23} a^{17} - \frac{5}{23} a^{16} + \frac{1}{23} a^{15} - \frac{1}{23} a^{14} + \frac{10}{23} a^{13} + \frac{10}{23} a^{12} - \frac{2}{23} a^{11} - \frac{1}{23} a^{10} - \frac{1}{23} a^{9} - \frac{6}{23} a^{8} - \frac{6}{23} a^{7} + \frac{3}{23} a^{6} + \frac{5}{23} a^{5} - \frac{7}{23} a^{4} - \frac{10}{23} a^{3} - \frac{10}{23} a^{2} - \frac{7}{23} a - \frac{4}{23}$, $\frac{1}{23} a^{22} + \frac{8}{23} a^{19} + \frac{9}{23} a^{18} + \frac{5}{23} a^{17} - \frac{10}{23} a^{16} + \frac{1}{23} a^{15} - \frac{2}{23} a^{14} - \frac{6}{23} a^{13} - \frac{2}{23} a^{12} + \frac{7}{23} a^{11} + \frac{6}{23} a^{10} - \frac{1}{23} a^{9} - \frac{2}{23} a^{8} - \frac{9}{23} a^{7} + \frac{8}{23} a^{6} - \frac{10}{23} a^{5} + \frac{4}{23} a^{4} - \frac{4}{23} a^{3} + \frac{11}{23} a^{2} - \frac{3}{23} a + \frac{11}{23}$, $\frac{1}{4163} a^{23} + \frac{28}{4163} a^{22} + \frac{62}{4163} a^{21} + \frac{86}{4163} a^{20} - \frac{1567}{4163} a^{19} + \frac{2040}{4163} a^{18} - \frac{296}{4163} a^{17} - \frac{477}{4163} a^{16} + \frac{536}{4163} a^{15} + \frac{1535}{4163} a^{14} - \frac{1938}{4163} a^{13} + \frac{1330}{4163} a^{12} - \frac{1028}{4163} a^{11} + \frac{1650}{4163} a^{10} - \frac{1824}{4163} a^{9} + \frac{597}{4163} a^{8} + \frac{675}{4163} a^{7} + \frac{1854}{4163} a^{6} - \frac{1788}{4163} a^{5} - \frac{249}{4163} a^{4} - \frac{1654}{4163} a^{3} - \frac{653}{4163} a^{2} + \frac{775}{4163} a + \frac{1029}{4163}$, $\frac{1}{226829381} a^{24} + \frac{22021}{226829381} a^{23} + \frac{3995860}{226829381} a^{22} + \frac{31197}{2202227} a^{21} + \frac{2168571}{226829381} a^{20} - \frac{24737309}{226829381} a^{19} + \frac{11754189}{226829381} a^{18} + \frac{103860861}{226829381} a^{17} + \frac{81723221}{226829381} a^{16} + \frac{91580375}{226829381} a^{15} - \frac{71747583}{226829381} a^{14} + \frac{96641382}{226829381} a^{13} - \frac{1663871}{226829381} a^{12} - \frac{59431604}{226829381} a^{11} - \frac{29796655}{226829381} a^{10} + \frac{108105903}{226829381} a^{9} - \frac{17791725}{226829381} a^{8} - \frac{76886205}{226829381} a^{7} + \frac{79357185}{226829381} a^{6} - \frac{77584599}{226829381} a^{5} - \frac{12603881}{226829381} a^{4} - \frac{68500955}{226829381} a^{3} - \frac{106131817}{226829381} a^{2} + \frac{26944494}{226829381} a + \frac{50320901}{226829381}$, $\frac{1}{34032705252010179604795025181570770367834525340105817231039} a^{25} + \frac{14379070825166015995285177526268790747884147955123}{34032705252010179604795025181570770367834525340105817231039} a^{24} + \frac{4051297043085877716109056127885615596445774211929721011}{34032705252010179604795025181570770367834525340105817231039} a^{23} - \frac{472060834176915934970715539179678402381356440407860065960}{34032705252010179604795025181570770367834525340105817231039} a^{22} - \frac{528448691529054017742268898484961022911925998185834028619}{34032705252010179604795025181570770367834525340105817231039} a^{21} + \frac{124855792687644380418765807644563977941333973235073473281}{34032705252010179604795025181570770367834525340105817231039} a^{20} - \frac{9208888255688710421737731440276599982214842641258021739992}{34032705252010179604795025181570770367834525340105817231039} a^{19} - \frac{11780548664328537056982800643887176943731203783217230027730}{34032705252010179604795025181570770367834525340105817231039} a^{18} + \frac{14394964218412428425557714188535600615622358031814706077756}{34032705252010179604795025181570770367834525340105817231039} a^{17} + \frac{5199382054220203847100382783174524483457145797309391162092}{34032705252010179604795025181570770367834525340105817231039} a^{16} - \frac{4918683188459619643364065579615361805178509756169208146699}{34032705252010179604795025181570770367834525340105817231039} a^{15} + \frac{669401229832693702329705869850510430308331179539980561909}{1479682837043920852382392399198729146427588058265470314393} a^{14} - \frac{7077898894037704141065615862799660901114767206418771035320}{34032705252010179604795025181570770367834525340105817231039} a^{13} - \frac{12058877407204250776023913630431869082073733786012041235507}{34032705252010179604795025181570770367834525340105817231039} a^{12} + \frac{978862757179115854147128287918677933755869448404782446791}{34032705252010179604795025181570770367834525340105817231039} a^{11} - \frac{998831706800167573564038011083948619172721459939407483661}{34032705252010179604795025181570770367834525340105817231039} a^{10} - \frac{7277400956983931601488912444338358823015982603293468373299}{34032705252010179604795025181570770367834525340105817231039} a^{9} + \frac{13313514440796137384869315779521242449520118701364101793247}{34032705252010179604795025181570770367834525340105817231039} a^{8} + \frac{4097975720616177426135594129206054335790570414185775260719}{34032705252010179604795025181570770367834525340105817231039} a^{7} - \frac{4472337164378412377150346725986877040948794737999576923462}{34032705252010179604795025181570770367834525340105817231039} a^{6} + \frac{6455029493232747488359377031503757470206657760385913186333}{34032705252010179604795025181570770367834525340105817231039} a^{5} - \frac{3571627769633389777472758513103087437117449862898890055168}{34032705252010179604795025181570770367834525340105817231039} a^{4} + \frac{4208021127195925083446705985679009420911238509316170786339}{34032705252010179604795025181570770367834525340105817231039} a^{3} + \frac{408647374785799375874097216827014198313797354038839441601}{34032705252010179604795025181570770367834525340105817231039} a^{2} + \frac{9155951918180833335857565904150114152167134743688407816188}{34032705252010179604795025181570770367834525340105817231039} a - \frac{2720154081732635316279588067812732558364663210167121598633}{34032705252010179604795025181570770367834525340105817231039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7085626941768992000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | $26$ | R | $26$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $79$ | 79.13.12.1 | $x^{13} - 79$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |
| 79.13.12.1 | $x^{13} - 79$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ | |