Normalized defining polynomial
\( x^{26} - 78 x^{24} - 104 x^{23} + 2470 x^{22} + 6331 x^{21} - 37323 x^{20} - 151905 x^{19} + 215267 x^{18} + 1781858 x^{17} + 906503 x^{16} - 10051106 x^{15} - 18421481 x^{14} + 18065815 x^{13} + 85339592 x^{12} + 52742326 x^{11} - 124959328 x^{10} - 219905283 x^{9} - 49300303 x^{8} + 174681793 x^{7} + 179735062 x^{6} + 45373016 x^{5} - 27198223 x^{4} - 20621640 x^{3} - 4697355 x^{2} - 343057 x - 7751 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3830224792147131369362629348887201408953937846517364173=13^{49}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(169=13^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{169}(64,·)$, $\chi_{169}(1,·)$, $\chi_{169}(66,·)$, $\chi_{169}(131,·)$, $\chi_{169}(129,·)$, $\chi_{169}(12,·)$, $\chi_{169}(77,·)$, $\chi_{169}(142,·)$, $\chi_{169}(79,·)$, $\chi_{169}(144,·)$, $\chi_{169}(14,·)$, $\chi_{169}(25,·)$, $\chi_{169}(90,·)$, $\chi_{169}(155,·)$, $\chi_{169}(92,·)$, $\chi_{169}(157,·)$, $\chi_{169}(27,·)$, $\chi_{169}(38,·)$, $\chi_{169}(103,·)$, $\chi_{169}(40,·)$, $\chi_{169}(105,·)$, $\chi_{169}(168,·)$, $\chi_{169}(51,·)$, $\chi_{169}(116,·)$, $\chi_{169}(53,·)$, $\chi_{169}(118,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{5}{23} a^{17} - \frac{5}{23} a^{16} + \frac{7}{23} a^{15} - \frac{4}{23} a^{14} + \frac{5}{23} a^{13} + \frac{2}{23} a^{12} - \frac{1}{23} a^{7} + \frac{5}{23} a^{6} + \frac{5}{23} a^{5} - \frac{7}{23} a^{4} + \frac{4}{23} a^{3} - \frac{5}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{23} a^{19} - \frac{7}{23} a^{17} + \frac{5}{23} a^{16} + \frac{8}{23} a^{15} + \frac{8}{23} a^{14} + \frac{4}{23} a^{13} + \frac{10}{23} a^{12} - \frac{1}{23} a^{8} + \frac{7}{23} a^{6} - \frac{5}{23} a^{5} - \frac{8}{23} a^{4} - \frac{8}{23} a^{3} - \frac{4}{23} a^{2} - \frac{10}{23} a$, $\frac{1}{23} a^{20} - \frac{7}{23} a^{17} - \frac{4}{23} a^{16} + \frac{11}{23} a^{15} - \frac{1}{23} a^{14} - \frac{1}{23} a^{13} - \frac{9}{23} a^{12} - \frac{1}{23} a^{9} + \frac{7}{23} a^{6} + \frac{4}{23} a^{5} - \frac{11}{23} a^{4} + \frac{1}{23} a^{3} + \frac{1}{23} a^{2} + \frac{9}{23} a$, $\frac{1}{23} a^{21} + \frac{7}{23} a^{17} - \frac{1}{23} a^{16} + \frac{2}{23} a^{15} - \frac{6}{23} a^{14} + \frac{3}{23} a^{13} - \frac{9}{23} a^{12} - \frac{1}{23} a^{10} - \frac{7}{23} a^{6} + \frac{1}{23} a^{5} - \frac{2}{23} a^{4} + \frac{6}{23} a^{3} - \frac{3}{23} a^{2} + \frac{9}{23} a$, $\frac{1}{23} a^{22} + \frac{11}{23} a^{17} - \frac{9}{23} a^{16} - \frac{9}{23} a^{15} + \frac{8}{23} a^{14} + \frac{2}{23} a^{13} + \frac{9}{23} a^{12} - \frac{1}{23} a^{11} - \frac{11}{23} a^{6} + \frac{9}{23} a^{5} + \frac{9}{23} a^{4} - \frac{8}{23} a^{3} - \frac{2}{23} a^{2} - \frac{9}{23} a$, $\frac{1}{23} a^{23} - \frac{1}{23} a$, $\frac{1}{34477} a^{24} - \frac{394}{34477} a^{23} + \frac{476}{34477} a^{22} - \frac{408}{34477} a^{21} + \frac{580}{34477} a^{20} + \frac{520}{34477} a^{19} + \frac{225}{34477} a^{18} - \frac{8009}{34477} a^{17} + \frac{2892}{34477} a^{16} - \frac{177}{1499} a^{15} - \frac{3116}{34477} a^{14} - \frac{13770}{34477} a^{13} - \frac{5115}{34477} a^{12} + \frac{6585}{34477} a^{11} - \frac{6446}{34477} a^{10} - \frac{7043}{34477} a^{9} + \frac{8933}{34477} a^{8} - \frac{340}{34477} a^{7} + \frac{1753}{34477} a^{6} + \frac{7642}{34477} a^{5} + \frac{481}{1499} a^{4} + \frac{15122}{34477} a^{3} - \frac{468}{34477} a^{2} + \frac{5969}{34477} a - \frac{38}{1499}$, $\frac{1}{26814668934265320178043805162355914796789} a^{25} + \frac{92860423872918691427623686627362799}{26814668934265320178043805162355914796789} a^{24} + \frac{47073347095592103697687911315693541000}{26814668934265320178043805162355914796789} a^{23} - \frac{358497429750042282663259898751818376230}{26814668934265320178043805162355914796789} a^{22} + \frac{71201565313461043088342785765497731547}{26814668934265320178043805162355914796789} a^{21} + \frac{216250412877673016886224033725896578837}{26814668934265320178043805162355914796789} a^{20} - \frac{206483657881543610221031287358112173057}{26814668934265320178043805162355914796789} a^{19} + \frac{235274641180612451871220770016890032}{50689355263261474816717968170805131941} a^{18} - \frac{7866916335456500367568430925335910930320}{26814668934265320178043805162355914796789} a^{17} - \frac{1605899162730146923695013538787801451569}{26814668934265320178043805162355914796789} a^{16} - \frac{10488080293804409889761156260910067567297}{26814668934265320178043805162355914796789} a^{15} + \frac{13310557366483590172165710164436776029971}{26814668934265320178043805162355914796789} a^{14} - \frac{1720003759770559059740193866143586561202}{26814668934265320178043805162355914796789} a^{13} + \frac{292939284247695891351414757758229241856}{1165855171055013920784513267928518034643} a^{12} - \frac{3266733463127694606336593112270264004933}{26814668934265320178043805162355914796789} a^{11} + \frac{10929570987560980612817310388255034929452}{26814668934265320178043805162355914796789} a^{10} - \frac{8105948517098252612833523757660403239735}{26814668934265320178043805162355914796789} a^{9} + \frac{9881228136213874800748648542830773246701}{26814668934265320178043805162355914796789} a^{8} + \frac{270967254008618395810808192307902765792}{1165855171055013920784513267928518034643} a^{7} + \frac{8924477730678686012206604206926016796208}{26814668934265320178043805162355914796789} a^{6} - \frac{13101469999469892826427854686306456616903}{26814668934265320178043805162355914796789} a^{5} + \frac{3571478243931909431593972718054658233837}{26814668934265320178043805162355914796789} a^{4} - \frac{3332373747833511396445935049520655962760}{26814668934265320178043805162355914796789} a^{3} + \frac{9542028672504614281965817320695909954159}{26814668934265320178043805162355914796789} a^{2} + \frac{368446791173088086688002451045384512885}{26814668934265320178043805162355914796789} a + \frac{170119615416993302629994530294780871821}{1165855171055013920784513267928518034643}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23413899400308634000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 13.13.542800770374370512771595361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | R | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{2}$ | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||