Normalized defining polynomial
\( x^{26} - 2 x^{25} - 110 x^{24} + 298 x^{23} + 4698 x^{22} - 15458 x^{21} - 100019 x^{20} + 387876 x^{19} + 1130070 x^{18} - 5295248 x^{17} - 6513691 x^{16} + 41264200 x^{15} + 13707903 x^{14} - 185004256 x^{13} + 34084476 x^{12} + 464489034 x^{11} - 231878250 x^{10} - 612670414 x^{9} + 436159945 x^{8} + 374426398 x^{7} - 332262756 x^{6} - 88275712 x^{5} + 102776883 x^{4} + 4496184 x^{3} - 11681058 x^{2} + 419040 x + 336697 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(373599588829974770195670809275806491434103418053178144325632=2^{26}\cdot 3^{13}\cdot 79^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(948=2^{2}\cdot 3\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{948}(1,·)$, $\chi_{948}(131,·)$, $\chi_{948}(877,·)$, $\chi_{948}(179,·)$, $\chi_{948}(97,·)$, $\chi_{948}(457,·)$, $\chi_{948}(599,·)$, $\chi_{948}(143,·)$, $\chi_{948}(337,·)$, $\chi_{948}(275,·)$, $\chi_{948}(791,·)$, $\chi_{948}(539,·)$, $\chi_{948}(541,·)$, $\chi_{948}(719,·)$, $\chi_{948}(289,·)$, $\chi_{948}(721,·)$, $\chi_{948}(299,·)$, $\chi_{948}(301,·)$, $\chi_{948}(733,·)$, $\chi_{948}(433,·)$, $\chi_{948}(563,·)$, $\chi_{948}(757,·)$, $\chi_{948}(887,·)$, $\chi_{948}(697,·)$, $\chi_{948}(383,·)$, $\chi_{948}(575,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{3}{23} a^{15} + \frac{9}{23} a^{14} + \frac{8}{23} a^{13} - \frac{9}{23} a^{12} - \frac{11}{23} a^{11} + \frac{6}{23} a^{10} - \frac{6}{23} a^{8} + \frac{2}{23} a^{7} - \frac{4}{23} a^{6} + \frac{2}{23} a^{5} + \frac{1}{23} a^{4} + \frac{8}{23} a^{3} + \frac{2}{23} a^{2} - \frac{6}{23} a$, $\frac{1}{23} a^{17} - \frac{11}{23} a^{14} - \frac{8}{23} a^{13} + \frac{8}{23} a^{12} - \frac{4}{23} a^{11} - \frac{5}{23} a^{10} - \frac{6}{23} a^{9} + \frac{7}{23} a^{8} + \frac{2}{23} a^{7} - \frac{10}{23} a^{6} + \frac{7}{23} a^{5} + \frac{11}{23} a^{4} + \frac{3}{23} a^{3} + \frac{5}{23} a$, $\frac{1}{23} a^{18} - \frac{11}{23} a^{15} - \frac{8}{23} a^{14} + \frac{8}{23} a^{13} - \frac{4}{23} a^{12} - \frac{5}{23} a^{11} - \frac{6}{23} a^{10} + \frac{7}{23} a^{9} + \frac{2}{23} a^{8} - \frac{10}{23} a^{7} + \frac{7}{23} a^{6} + \frac{11}{23} a^{5} + \frac{3}{23} a^{4} + \frac{5}{23} a^{2}$, $\frac{1}{23} a^{19} + \frac{5}{23} a^{15} - \frac{8}{23} a^{14} - \frac{8}{23} a^{13} + \frac{11}{23} a^{12} + \frac{11}{23} a^{11} + \frac{4}{23} a^{10} + \frac{2}{23} a^{9} - \frac{7}{23} a^{8} + \frac{6}{23} a^{7} - \frac{10}{23} a^{6} + \frac{2}{23} a^{5} + \frac{11}{23} a^{4} + \frac{1}{23} a^{3} - \frac{1}{23} a^{2} + \frac{3}{23} a$, $\frac{1}{23} a^{20} + \frac{7}{23} a^{15} - \frac{7}{23} a^{14} - \frac{6}{23} a^{13} + \frac{10}{23} a^{12} - \frac{10}{23} a^{11} - \frac{5}{23} a^{10} - \frac{7}{23} a^{9} - \frac{10}{23} a^{8} + \frac{3}{23} a^{7} - \frac{1}{23} a^{6} + \frac{1}{23} a^{5} - \frac{4}{23} a^{4} + \frac{5}{23} a^{3} - \frac{7}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{23} a^{21} - \frac{9}{23} a^{15} + \frac{7}{23} a^{12} + \frac{3}{23} a^{11} - \frac{3}{23} a^{10} - \frac{10}{23} a^{9} - \frac{1}{23} a^{8} + \frac{8}{23} a^{7} + \frac{6}{23} a^{6} + \frac{5}{23} a^{5} - \frac{2}{23} a^{4} + \frac{6}{23} a^{3} - \frac{7}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{529} a^{22} - \frac{2}{529} a^{21} + \frac{4}{529} a^{20} + \frac{1}{529} a^{19} + \frac{1}{529} a^{17} + \frac{162}{529} a^{15} - \frac{242}{529} a^{14} - \frac{30}{529} a^{13} + \frac{197}{529} a^{12} + \frac{227}{529} a^{11} + \frac{259}{529} a^{10} + \frac{194}{529} a^{9} - \frac{84}{529} a^{8} - \frac{179}{529} a^{7} + \frac{48}{529} a^{6} - \frac{96}{529} a^{5} - \frac{251}{529} a^{4} + \frac{238}{529} a^{3} - \frac{254}{529} a^{2} + \frac{197}{529} a - \frac{6}{23}$, $\frac{1}{529} a^{23} + \frac{9}{529} a^{20} + \frac{2}{529} a^{19} + \frac{1}{529} a^{18} + \frac{2}{529} a^{17} + \frac{1}{529} a^{16} + \frac{36}{529} a^{15} + \frac{153}{529} a^{14} - \frac{93}{529} a^{13} - \frac{2}{23} a^{12} - \frac{7}{23} a^{11} - \frac{254}{529} a^{10} - \frac{225}{529} a^{9} + \frac{90}{529} a^{8} - \frac{103}{529} a^{7} + \frac{5}{23} a^{6} - \frac{236}{529} a^{5} + \frac{104}{529} a^{4} - \frac{8}{529} a^{3} - \frac{104}{529} a^{2} + \frac{164}{529} a + \frac{11}{23}$, $\frac{1}{196752557} a^{24} + \frac{165118}{196752557} a^{23} - \frac{49401}{196752557} a^{22} - \frac{2869845}{196752557} a^{21} + \frac{27932}{8554459} a^{20} + \frac{1348059}{196752557} a^{19} - \frac{2623354}{196752557} a^{18} + \frac{470333}{196752557} a^{17} + \frac{3283586}{196752557} a^{16} + \frac{6390949}{196752557} a^{15} - \frac{94470199}{196752557} a^{14} + \frac{4259601}{196752557} a^{13} + \frac{3172130}{196752557} a^{12} - \frac{6365007}{196752557} a^{11} + \frac{51375076}{196752557} a^{10} + \frac{16947790}{196752557} a^{9} - \frac{33282875}{196752557} a^{8} - \frac{32980777}{196752557} a^{7} + \frac{4161313}{8554459} a^{6} - \frac{88484479}{196752557} a^{5} - \frac{86590666}{196752557} a^{4} + \frac{60132308}{196752557} a^{3} + \frac{12539519}{196752557} a^{2} + \frac{35104252}{196752557} a + \frac{3030818}{8554459}$, $\frac{1}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{25} + \frac{4187839274092115963706209345652293357008054533268558123109450}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{24} + \frac{889284587820575735163540882882251464589198424706162130551593210423}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{23} + \frac{908248598583869916259025083180576569913928187174047569139335580266}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{22} - \frac{3553014189794018978037749204352738722442032196302166405035237847648}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{21} - \frac{32701205746976214226457328307822392555464006675281137466022702269361}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{20} + \frac{35906561168729180693763859435958587188921188309433728646569792828871}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{19} + \frac{28602559832412124970583469631060315662373631050926954166110623739073}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{18} - \frac{27163711349188305187028388031968422073822952628516231286149548547835}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{17} + \frac{23934188809553452919819274394983937763987861925022355053370123988601}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{16} + \frac{712939900076239835019899655866068928232978563476431297160360767056671}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{15} + \frac{283786703235408576573837653410723568316255224138310929783772339712834}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{14} + \frac{632557039350399367407096584990335137950325933581707640722545916013865}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{13} + \frac{596408476387063073504527834282782098931067503945662678406588588028181}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{12} - \frac{281939255355152259948654218772193955836804670281729308082879117289509}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{11} + \frac{611956883828544716918488973254795283635486574615107523173069485817321}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{10} - \frac{436258483194827337177176041548157806486603716975314999459599393493424}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{9} - \frac{26213540373143575461718126511877395577093558587311032594287223470679}{81602117989477039723000832947661443259663244100680533704195196668493} a^{8} + \frac{286885038331098936153155009871982497803947174135334379567909130405606}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{7} + \frac{201146291288106628784729384015904790985770024776805153363745480467395}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{6} + \frac{129804928252582407341481871278724977981544377989069046675033500483517}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{5} + \frac{917231394177413959097172709891607011188160813147151971509696068546964}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{4} + \frac{645870957851296492636674434303108984931867622445874021288533100562232}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{3} + \frac{183256307430220805856028463677614364287970256860472618872089178441414}{1876848713757971913629019157796213194972254614315652275196489523375339} a^{2} - \frac{499142704951695278811027445637902032090726122616870562276045193987243}{1876848713757971913629019157796213194972254614315652275196489523375339} a - \frac{15866137260200828658323069967567507060158484009656167809115445188128}{81602117989477039723000832947661443259663244100680533704195196668493}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7436031871254272000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $26$ | $26$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 79 | Data not computed | ||||||