Normalized defining polynomial
\( x^{26} - x^{25} - 156 x^{24} - 110 x^{23} + 10071 x^{22} + 22195 x^{21} - 329551 x^{20} - 1208507 x^{19} + 5310580 x^{18} + 30844380 x^{17} - 25391827 x^{16} - 402354875 x^{15} - 383501239 x^{14} + 2536241039 x^{13} + 6019633502 x^{12} - 4639134330 x^{11} - 30521065603 x^{10} - 22839488411 x^{9} + 50701543916 x^{8} + 101906597908 x^{7} + 33139423840 x^{6} - 78629976783 x^{5} - 102426530893 x^{4} - 53539363068 x^{3} - 13595597644 x^{2} - 1573526488 x - 65884397 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26727097776294998942448064582453023235154520026711313563593=7^{13}\cdot 79^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $176.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(553=7\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{553}(512,·)$, $\chi_{553}(1,·)$, $\chi_{553}(69,·)$, $\chi_{553}(64,·)$, $\chi_{553}(8,·)$, $\chi_{553}(204,·)$, $\chi_{553}(141,·)$, $\chi_{553}(526,·)$, $\chi_{553}(337,·)$, $\chi_{553}(531,·)$, $\chi_{553}(22,·)$, $\chi_{553}(216,·)$, $\chi_{553}(27,·)$, $\chi_{553}(412,·)$, $\chi_{553}(349,·)$, $\chi_{553}(545,·)$, $\chi_{553}(484,·)$, $\chi_{553}(552,·)$, $\chi_{553}(41,·)$, $\chi_{553}(225,·)$, $\chi_{553}(302,·)$, $\chi_{553}(176,·)$, $\chi_{553}(328,·)$, $\chi_{553}(489,·)$, $\chi_{553}(377,·)$, $\chi_{553}(251,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23} a^{15} + \frac{6}{23} a^{14} + \frac{2}{23} a^{13} - \frac{5}{23} a^{12} + \frac{2}{23} a^{11} + \frac{9}{23} a^{10} + \frac{3}{23} a^{9} - \frac{3}{23} a^{8} - \frac{5}{23} a^{7} - \frac{5}{23} a^{6} - \frac{6}{23} a^{5} - \frac{2}{23} a^{4} + \frac{7}{23} a^{3} - \frac{7}{23} a^{2} + \frac{3}{23} a$, $\frac{1}{23} a^{16} - \frac{11}{23} a^{14} + \frac{6}{23} a^{13} + \frac{9}{23} a^{12} - \frac{3}{23} a^{11} - \frac{5}{23} a^{10} + \frac{2}{23} a^{9} - \frac{10}{23} a^{8} + \frac{2}{23} a^{7} + \frac{1}{23} a^{6} + \frac{11}{23} a^{5} - \frac{4}{23} a^{4} - \frac{3}{23} a^{3} - \frac{1}{23} a^{2} + \frac{5}{23} a$, $\frac{1}{23} a^{17} + \frac{3}{23} a^{14} + \frac{8}{23} a^{13} + \frac{11}{23} a^{12} - \frac{6}{23} a^{11} + \frac{9}{23} a^{10} - \frac{8}{23} a^{8} - \frac{8}{23} a^{7} + \frac{2}{23} a^{6} - \frac{1}{23} a^{5} - \frac{2}{23} a^{4} + \frac{7}{23} a^{3} - \frac{3}{23} a^{2} + \frac{10}{23} a$, $\frac{1}{23} a^{18} - \frac{10}{23} a^{14} + \frac{5}{23} a^{13} + \frac{9}{23} a^{12} + \frac{3}{23} a^{11} - \frac{4}{23} a^{10} + \frac{6}{23} a^{9} + \frac{1}{23} a^{8} - \frac{6}{23} a^{7} - \frac{9}{23} a^{6} - \frac{7}{23} a^{5} - \frac{10}{23} a^{4} - \frac{1}{23} a^{3} + \frac{8}{23} a^{2} - \frac{9}{23} a$, $\frac{1}{23} a^{19} - \frac{4}{23} a^{14} + \frac{6}{23} a^{13} - \frac{1}{23} a^{12} - \frac{7}{23} a^{11} + \frac{4}{23} a^{10} + \frac{8}{23} a^{9} + \frac{10}{23} a^{8} + \frac{10}{23} a^{7} - \frac{11}{23} a^{6} - \frac{1}{23} a^{5} + \frac{2}{23} a^{4} + \frac{9}{23} a^{3} - \frac{10}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{23} a^{20} + \frac{7}{23} a^{14} + \frac{7}{23} a^{13} - \frac{4}{23} a^{12} - \frac{11}{23} a^{11} - \frac{2}{23} a^{10} - \frac{1}{23} a^{9} - \frac{2}{23} a^{8} - \frac{8}{23} a^{7} + \frac{2}{23} a^{6} + \frac{1}{23} a^{5} + \frac{1}{23} a^{4} - \frac{5}{23} a^{3} + \frac{2}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{23} a^{21} + \frac{11}{23} a^{14} + \frac{5}{23} a^{13} + \frac{1}{23} a^{12} + \frac{7}{23} a^{11} + \frac{5}{23} a^{10} - \frac{10}{23} a^{8} - \frac{9}{23} a^{7} - \frac{10}{23} a^{6} - \frac{3}{23} a^{5} + \frac{9}{23} a^{4} - \frac{1}{23} a^{3} - \frac{8}{23} a^{2} + \frac{2}{23} a$, $\frac{1}{6739} a^{22} + \frac{83}{6739} a^{21} + \frac{62}{6739} a^{20} + \frac{135}{6739} a^{19} + \frac{39}{6739} a^{18} - \frac{14}{6739} a^{17} + \frac{4}{293} a^{16} - \frac{33}{6739} a^{15} + \frac{2646}{6739} a^{14} + \frac{413}{6739} a^{13} - \frac{1486}{6739} a^{12} + \frac{2292}{6739} a^{11} - \frac{2469}{6739} a^{10} + \frac{1915}{6739} a^{9} - \frac{1768}{6739} a^{8} - \frac{1553}{6739} a^{7} - \frac{3250}{6739} a^{6} - \frac{1895}{6739} a^{5} + \frac{1241}{6739} a^{4} + \frac{553}{6739} a^{3} - \frac{2100}{6739} a^{2} + \frac{404}{6739} a + \frac{85}{293}$, $\frac{1}{220035089} a^{23} - \frac{8622}{220035089} a^{22} - \frac{4029544}{220035089} a^{21} - \frac{140991}{9566743} a^{20} + \frac{953509}{220035089} a^{19} - \frac{4393750}{220035089} a^{18} + \frac{191696}{220035089} a^{17} - \frac{1970549}{220035089} a^{16} - \frac{824368}{220035089} a^{15} + \frac{103126044}{220035089} a^{14} - \frac{109275891}{220035089} a^{13} - \frac{36803223}{220035089} a^{12} + \frac{14786974}{220035089} a^{11} - \frac{57976416}{220035089} a^{10} + \frac{106660354}{220035089} a^{9} - \frac{7728227}{220035089} a^{8} - \frac{91148673}{220035089} a^{7} - \frac{79798052}{220035089} a^{6} - \frac{69546336}{220035089} a^{5} + \frac{68740116}{220035089} a^{4} - \frac{59627475}{220035089} a^{3} - \frac{88848686}{220035089} a^{2} + \frac{1742342}{9566743} a - \frac{4248893}{9566743}$, $\frac{1}{794546706379} a^{24} + \frac{1309}{794546706379} a^{23} + \frac{25342196}{794546706379} a^{22} + \frac{433577451}{34545508973} a^{21} - \frac{8442340}{7714045693} a^{20} - \frac{7451350414}{794546706379} a^{19} + \frac{3671478172}{794546706379} a^{18} - \frac{3305288449}{794546706379} a^{17} - \frac{11678893646}{794546706379} a^{16} + \frac{11234683398}{794546706379} a^{15} + \frac{338895796796}{794546706379} a^{14} + \frac{269150771972}{794546706379} a^{13} - \frac{38701327271}{794546706379} a^{12} + \frac{329936570001}{794546706379} a^{11} - \frac{255520993954}{794546706379} a^{10} - \frac{129018143441}{794546706379} a^{9} + \frac{257132868060}{794546706379} a^{8} + \frac{3118541524}{7714045693} a^{7} - \frac{174384624522}{794546706379} a^{6} - \frac{161629707637}{794546706379} a^{5} - \frac{27996121262}{794546706379} a^{4} + \frac{231383404033}{794546706379} a^{3} - \frac{73897775722}{794546706379} a^{2} + \frac{54365409886}{794546706379} a - \frac{7470960769}{34545508973}$, $\frac{1}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{25} + \frac{66129419272794891995942049961865914855983181980660057085737}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{24} - \frac{73252829238671985081161954161696136091786606985694354874173404}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{23} - \frac{5984749732412135711868095623694421806034147940189006603500117546239}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{22} - \frac{2483562048106235066535357219480389287737066645219317238134688437402443}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{21} - \frac{6046384747567323001085883352019891764798098395589014893953993977010305}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{20} + \frac{1638701429291327043274983129405221840484893227243540482355377897653049}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{19} + \frac{875185934665211505828838501271750155542931352396180853200860557462337}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{18} + \frac{4173404588538161166379600963068400215815052067867923981169957732977445}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{17} - \frac{1824696599234455435747961121932635114696415988019599124312202452470838}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{16} - \frac{6051092520328326783061982483883257743633892157221762252506162193488610}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{15} - \frac{146973574147931968556863946618218607114806224932549062048330053647957584}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{14} + \frac{57676493156461588676769844991480268861470614525887004797072394348353135}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{13} - \frac{145517033751862747828092271702329266818385767844041431003765066903349380}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{12} - \frac{139322862611470145671273663822172878347495155479599197313747269058650689}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{11} + \frac{102165237601191759800669381614170876750576032183704479066813462289415246}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{10} - \frac{120916645718858925493148857945359797881480066130979226144597485218039789}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{9} + \frac{76759441739728739415306306675649468944815150413336026610293375158556417}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{8} - \frac{5615013877377022725378637608877725382305811391379645464933796384674434}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{7} - \frac{81492228529165754769433142751887243374336363601357005997670265889124345}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{6} + \frac{59262562135964774042063833226021873509755893843199649527761215103044974}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{5} + \frac{115537437282727921268990275843607606645514640981262955817475812942472111}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{4} + \frac{6237047065040035738934540911742713329938147365351940508665845064217245}{14207774815384270418403111419666770836991976062643121918304603267973999} a^{3} - \frac{29437766736779721481897009716231533341409192887917045704579075931160236}{326778820753838219623271562652335729250815449440791804121005875163401977} a^{2} + \frac{134680524404638993672885443473302068182763458931292850862605934748795776}{326778820753838219623271562652335729250815449440791804121005875163401977} a - \frac{5014170131296875823904267927373442450768819550447006137898001805933472}{14207774815384270418403111419666770836991976062643121918304603267973999}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2411631151251373700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{553}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | $26$ | R | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 79 | Data not computed | ||||||