Properties

Label 26.26.2390324420...6497.1
Degree $26$
Signature $[26, 0]$
Discriminant $17^{13}\cdot 53^{24}$
Root discriminant $161.01$
Ramified primes $17, 53$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-103667, 3285731, -16149195, -44893709, 242230560, 202807416, -746387536, -291363716, 1020742598, 148887155, -753477802, 9184973, 324920368, -39841542, -84200156, 17384092, 13015057, -3650177, -1139464, 420577, 47802, -26688, -218, 864, -46, -11, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 11*x^25 - 46*x^24 + 864*x^23 - 218*x^22 - 26688*x^21 + 47802*x^20 + 420577*x^19 - 1139464*x^18 - 3650177*x^17 + 13015057*x^16 + 17384092*x^15 - 84200156*x^14 - 39841542*x^13 + 324920368*x^12 + 9184973*x^11 - 753477802*x^10 + 148887155*x^9 + 1020742598*x^8 - 291363716*x^7 - 746387536*x^6 + 202807416*x^5 + 242230560*x^4 - 44893709*x^3 - 16149195*x^2 + 3285731*x - 103667)
 
gp: K = bnfinit(x^26 - 11*x^25 - 46*x^24 + 864*x^23 - 218*x^22 - 26688*x^21 + 47802*x^20 + 420577*x^19 - 1139464*x^18 - 3650177*x^17 + 13015057*x^16 + 17384092*x^15 - 84200156*x^14 - 39841542*x^13 + 324920368*x^12 + 9184973*x^11 - 753477802*x^10 + 148887155*x^9 + 1020742598*x^8 - 291363716*x^7 - 746387536*x^6 + 202807416*x^5 + 242230560*x^4 - 44893709*x^3 - 16149195*x^2 + 3285731*x - 103667, 1)
 

Normalized defining polynomial

\( x^{26} - 11 x^{25} - 46 x^{24} + 864 x^{23} - 218 x^{22} - 26688 x^{21} + 47802 x^{20} + 420577 x^{19} - 1139464 x^{18} - 3650177 x^{17} + 13015057 x^{16} + 17384092 x^{15} - 84200156 x^{14} - 39841542 x^{13} + 324920368 x^{12} + 9184973 x^{11} - 753477802 x^{10} + 148887155 x^{9} + 1020742598 x^{8} - 291363716 x^{7} - 746387536 x^{6} + 202807416 x^{5} + 242230560 x^{4} - 44893709 x^{3} - 16149195 x^{2} + 3285731 x - 103667 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $26$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[26, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2390324420009215699399802682569915825064508173649530336497=17^{13}\cdot 53^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $161.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(901=17\cdot 53\)
Dirichlet character group:    $\lbrace$$\chi_{901}(256,·)$, $\chi_{901}(1,·)$, $\chi_{901}(579,·)$, $\chi_{901}(69,·)$, $\chi_{901}(577,·)$, $\chi_{901}(713,·)$, $\chi_{901}(203,·)$, $\chi_{901}(460,·)$, $\chi_{901}(205,·)$, $\chi_{901}(526,·)$, $\chi_{901}(16,·)$, $\chi_{901}(664,·)$, $\chi_{901}(596,·)$, $\chi_{901}(407,·)$, $\chi_{901}(152,·)$, $\chi_{901}(222,·)$, $\chi_{901}(543,·)$, $\chi_{901}(545,·)$, $\chi_{901}(611,·)$, $\chi_{901}(849,·)$, $\chi_{901}(169,·)$, $\chi_{901}(492,·)$, $\chi_{901}(307,·)$, $\chi_{901}(766,·)$, $\chi_{901}(630,·)$, $\chi_{901}(254,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{23} a^{22} - \frac{5}{23} a^{21} - \frac{9}{23} a^{20} - \frac{6}{23} a^{19} + \frac{3}{23} a^{18} + \frac{1}{23} a^{17} + \frac{9}{23} a^{16} - \frac{11}{23} a^{15} + \frac{5}{23} a^{13} - \frac{4}{23} a^{12} - \frac{11}{23} a^{11} - \frac{10}{23} a^{10} + \frac{4}{23} a^{9} + \frac{4}{23} a^{8} + \frac{9}{23} a^{7} - \frac{8}{23} a^{6} + \frac{8}{23} a^{5} - \frac{4}{23} a^{4} + \frac{8}{23} a^{3} - \frac{11}{23} a^{2} + \frac{10}{23} a + \frac{10}{23}$, $\frac{1}{1909} a^{23} + \frac{38}{1909} a^{22} + \frac{190}{1909} a^{21} + \frac{67}{1909} a^{20} - \frac{669}{1909} a^{19} - \frac{261}{1909} a^{18} - \frac{316}{1909} a^{17} + \frac{698}{1909} a^{16} - \frac{565}{1909} a^{15} + \frac{327}{1909} a^{14} + \frac{4}{1909} a^{13} - \frac{597}{1909} a^{12} - \frac{3}{83} a^{11} + \frac{563}{1909} a^{10} + \frac{61}{1909} a^{9} + \frac{20}{1909} a^{8} + \frac{586}{1909} a^{7} + \frac{308}{1909} a^{6} - \frac{189}{1909} a^{5} - \frac{26}{1909} a^{4} + \frac{34}{1909} a^{3} - \frac{164}{1909} a^{2} + \frac{279}{1909} a + \frac{11}{23}$, $\frac{1}{435105007} a^{24} + \frac{31277}{435105007} a^{23} - \frac{2958080}{435105007} a^{22} - \frac{689915}{435105007} a^{21} - \frac{125178196}{435105007} a^{20} - \frac{149214745}{435105007} a^{19} - \frac{155628593}{435105007} a^{18} + \frac{80706493}{435105007} a^{17} + \frac{35336577}{435105007} a^{16} - \frac{21213313}{435105007} a^{15} + \frac{5839729}{435105007} a^{14} - \frac{101204199}{435105007} a^{13} - \frac{2123843}{18917609} a^{12} + \frac{138000532}{435105007} a^{11} + \frac{804003}{18917609} a^{10} + \frac{177363864}{435105007} a^{9} - \frac{6827204}{435105007} a^{8} + \frac{15974892}{435105007} a^{7} - \frac{59543888}{435105007} a^{6} - \frac{120606130}{435105007} a^{5} + \frac{116482341}{435105007} a^{4} + \frac{175962965}{435105007} a^{3} - \frac{80274022}{435105007} a^{2} + \frac{154412}{605153} a - \frac{1412830}{5242229}$, $\frac{1}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{25} - \frac{1443359108706847187476068107364330592158041567606948296345703195064287545591}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{24} - \frac{1114036498853300356338541511376312704395583927318196184724305033228023275880730938}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{23} + \frac{39473999036827537414721243484646548815993195336989175796118527847717577160808741575}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{22} - \frac{761358552996428581416804383634446272615323702436165843328268008011859907247583943200}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{21} - \frac{2349147193615925209466583814269731290018440432204556539392235477372537362656594393913}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{20} + \frac{990966900381535241058897952905214926483723004989436158850090997354882193402266276075}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{19} + \frac{1394543311789127604106290759737414268565977533827807285715114505351925810215269761472}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{18} - \frac{658826891760122038697784490127479852509048444922993456222286412162411566696925781619}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{17} - \frac{1037994361288235380740690505012007048168139981203947130986330492948779148890694404278}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{16} - \frac{2301123011758029824752958432896160773375031033629860561676683995490973608758138898184}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{15} - \frac{2137953986476138962220633154973831984130311289383469376516099542309500376109672804289}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{14} + \frac{5979028756378739438236788015549603051549316440848494822031728747740203744445509870}{205706263321569394862757752381768958227424741890483490718990471196207070953542349893} a^{13} + \frac{700656195766062616761025421308132347911103669465968244848620087910391968099314822568}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{12} - \frac{532562258714477345161557766684984509301097083961594203853676169037875087079769519}{2478388714717703552563346414238180219607527010728716755650487604773579168114968071} a^{11} + \frac{1790100862865195008944833777451914107790993259609162866706338932087370399965655098754}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{10} - \frac{2001740549795655309767068487419743364683707541843577786564793589918579279960480277080}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{9} - \frac{265865110510621329814774380753707680427865347295611789297215588610050112722016430654}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{8} + \frac{627355518954022678536686808528411843030136424510172897023643180703220223346380295895}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{7} + \frac{930448561431204309865912569392173687305813851623646954298146522203296511658652575280}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{6} + \frac{101573715390819629490802229184473674833995953422888313408329669779799798140775166657}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{5} - \frac{1941571354089978578687119988943218144249348896759933169111189880977286780012468201959}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{4} + \frac{2057398290433373782084449317276891380776973747934972449368138515575324489873050024494}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{3} + \frac{2204589158320063231523884577184965396389534555472492280260269239529663672486394870660}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a^{2} - \frac{1866513110987670871049407654915223051367812477321305713862014100512598623176013404608}{4731244056396096081843428304780686039230769063481120286536780837512762631931474047539} a + \frac{1236260261118668251953828086011112770674994111079186867406744945374275494681418886}{2478388714717703552563346414238180219607527010728716755650487604773579168114968071}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $25$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 189533419563539170000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{26}$ (as 26T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 13.13.491258904256726154641.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ $26$ $26$ $26$ $26$ ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ R ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ $26$ $26$ $26$ $26$ ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ R ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
$53$53.13.12.1$x^{13} - 53$$13$$1$$12$$C_{13}$$[\ ]_{13}$
53.13.12.1$x^{13} - 53$$13$$1$$12$$C_{13}$$[\ ]_{13}$