Normalized defining polynomial
\( x^{26} - 79 x^{24} + 2528 x^{22} - 42739 x^{20} + 417989 x^{18} - 2445287 x^{16} + 8601283 x^{14} - 17752643 x^{12} + 20149108 x^{10} - 11220923 x^{8} + 2900801 x^{6} - 310233 x^{4} + 10586 x^{2} - 79 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18512163167418400691364293140592409959145148145138139136=2^{26}\cdot 79^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(316=2^{2}\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{316}(1,·)$, $\chi_{316}(245,·)$, $\chi_{316}(97,·)$, $\chi_{316}(71,·)$, $\chi_{316}(141,·)$, $\chi_{316}(15,·)$, $\chi_{316}(227,·)$, $\chi_{316}(21,·)$, $\chi_{316}(215,·)$, $\chi_{316}(225,·)$, $\chi_{316}(89,·)$, $\chi_{316}(27,·)$, $\chi_{316}(289,·)$, $\chi_{316}(219,·)$, $\chi_{316}(101,·)$, $\chi_{316}(65,·)$, $\chi_{316}(295,·)$, $\chi_{316}(199,·)$, $\chi_{316}(301,·)$, $\chi_{316}(175,·)$, $\chi_{316}(91,·)$, $\chi_{316}(117,·)$, $\chi_{316}(251,·)$, $\chi_{316}(315,·)$, $\chi_{316}(125,·)$, $\chi_{316}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{4}{23} a^{16} - \frac{9}{23} a^{14} + \frac{2}{23} a^{12} + \frac{3}{23} a^{10} + \frac{8}{23} a^{8} + \frac{3}{23} a^{6} - \frac{4}{23} a^{4} + \frac{1}{23} a^{2} - \frac{11}{23}$, $\frac{1}{23} a^{19} + \frac{4}{23} a^{17} - \frac{9}{23} a^{15} + \frac{2}{23} a^{13} + \frac{3}{23} a^{11} + \frac{8}{23} a^{9} + \frac{3}{23} a^{7} - \frac{4}{23} a^{5} + \frac{1}{23} a^{3} - \frac{11}{23} a$, $\frac{1}{23} a^{20} - \frac{2}{23} a^{16} - \frac{8}{23} a^{14} - \frac{5}{23} a^{12} - \frac{4}{23} a^{10} - \frac{6}{23} a^{8} + \frac{7}{23} a^{6} - \frac{6}{23} a^{4} + \frac{8}{23} a^{2} - \frac{2}{23}$, $\frac{1}{23} a^{21} - \frac{2}{23} a^{17} - \frac{8}{23} a^{15} - \frac{5}{23} a^{13} - \frac{4}{23} a^{11} - \frac{6}{23} a^{9} + \frac{7}{23} a^{7} - \frac{6}{23} a^{5} + \frac{8}{23} a^{3} - \frac{2}{23} a$, $\frac{1}{2369} a^{22} - \frac{36}{2369} a^{20} - \frac{15}{2369} a^{18} + \frac{58}{2369} a^{16} - \frac{1003}{2369} a^{14} - \frac{172}{2369} a^{12} + \frac{306}{2369} a^{10} - \frac{1077}{2369} a^{8} - \frac{642}{2369} a^{6} + \frac{9}{103} a^{4} - \frac{579}{2369} a^{2} + \frac{376}{2369}$, $\frac{1}{2369} a^{23} - \frac{36}{2369} a^{21} - \frac{15}{2369} a^{19} + \frac{58}{2369} a^{17} - \frac{1003}{2369} a^{15} - \frac{172}{2369} a^{13} + \frac{306}{2369} a^{11} - \frac{1077}{2369} a^{9} - \frac{642}{2369} a^{7} + \frac{9}{103} a^{5} - \frac{579}{2369} a^{3} + \frac{376}{2369} a$, $\frac{1}{6130694585174677034818193668507} a^{24} + \frac{972631654876513918949647338}{6130694585174677034818193668507} a^{22} - \frac{87689094975678379996736073722}{6130694585174677034818193668507} a^{20} + \frac{16180434431672850839923533208}{6130694585174677034818193668507} a^{18} - \frac{1019935547245848613060855708348}{6130694585174677034818193668507} a^{16} - \frac{219859669085799716065385828768}{6130694585174677034818193668507} a^{14} + \frac{1910602514060879423963960022814}{6130694585174677034818193668507} a^{12} + \frac{350360693222680941252877495513}{6130694585174677034818193668507} a^{10} - \frac{2087866601719585700045759064802}{6130694585174677034818193668507} a^{8} + \frac{2694598909210971410206000920261}{6130694585174677034818193668507} a^{6} + \frac{2107344757015685327256300253190}{6130694585174677034818193668507} a^{4} - \frac{916026493504859916570579613102}{6130694585174677034818193668507} a^{2} + \frac{383023767409824919122278615787}{6130694585174677034818193668507}$, $\frac{1}{6130694585174677034818193668507} a^{25} + \frac{972631654876513918949647338}{6130694585174677034818193668507} a^{23} - \frac{87689094975678379996736073722}{6130694585174677034818193668507} a^{21} + \frac{16180434431672850839923533208}{6130694585174677034818193668507} a^{19} - \frac{1019935547245848613060855708348}{6130694585174677034818193668507} a^{17} - \frac{219859669085799716065385828768}{6130694585174677034818193668507} a^{15} + \frac{1910602514060879423963960022814}{6130694585174677034818193668507} a^{13} + \frac{350360693222680941252877495513}{6130694585174677034818193668507} a^{11} - \frac{2087866601719585700045759064802}{6130694585174677034818193668507} a^{9} + \frac{2694598909210971410206000920261}{6130694585174677034818193668507} a^{7} + \frac{2107344757015685327256300253190}{6130694585174677034818193668507} a^{5} - \frac{916026493504859916570579613102}{6130694585174677034818193668507} a^{3} + \frac{383023767409824919122278615787}{6130694585174677034818193668507} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6734782845265950000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{79}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | $26$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 79 | Data not computed | ||||||