Properties

Label 26.26.161...048.1
Degree $26$
Signature $[26, 0]$
Discriminant $1.620\times 10^{65}$
Root discriminant \(322.15\)
Ramified primes $2,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407)
 
gp: K = bnfinit(y^26 - 182*y^24 - 130*y^23 + 13676*y^22 + 16874*y^21 - 557063*y^20 - 898690*y^19 + 13585728*y^18 + 25758668*y^17 - 206672505*y^16 - 437966698*y^15 + 1975279540*y^14 + 4572542860*y^13 - 11606965747*y^12 - 29202022252*y^11 + 39753657307*y^10 + 109898528610*y^9 - 73035512264*y^8 - 227318807846*y^7 + 69544180524*y^6 + 237373608862*y^5 - 38924210832*y^4 - 100654468148*y^3 + 15446207101*y^2 + 2758719782*y + 44790407, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407)
 

\( x^{26} - 182 x^{24} - 130 x^{23} + 13676 x^{22} + 16874 x^{21} - 557063 x^{20} - 898690 x^{19} + \cdots + 44790407 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[26, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(161976026767757064385262172731473762898927110116516889788623618048\) \(\medspace = 2^{39}\cdot 13^{48}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(322.15\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}13^{24/13}\approx 322.1482657818918$
Ramified primes:   \(2\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1352=2^{3}\cdot 13^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{1352}(1,·)$, $\chi_{1352}(261,·)$, $\chi_{1352}(833,·)$, $\chi_{1352}(521,·)$, $\chi_{1352}(1145,·)$, $\chi_{1352}(1249,·)$, $\chi_{1352}(781,·)$, $\chi_{1352}(365,·)$, $\chi_{1352}(1041,·)$, $\chi_{1352}(1301,·)$, $\chi_{1352}(885,·)$, $\chi_{1352}(729,·)$, $\chi_{1352}(157,·)$, $\chi_{1352}(1093,·)$, $\chi_{1352}(417,·)$, $\chi_{1352}(677,·)$, $\chi_{1352}(209,·)$, $\chi_{1352}(937,·)$, $\chi_{1352}(1197,·)$, $\chi_{1352}(989,·)$, $\chi_{1352}(625,·)$, $\chi_{1352}(53,·)$, $\chi_{1352}(105,·)$, $\chi_{1352}(313,·)$, $\chi_{1352}(573,·)$, $\chi_{1352}(469,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23}a^{15}+\frac{10}{23}a^{14}-\frac{2}{23}a^{12}+\frac{4}{23}a^{11}+\frac{11}{23}a^{10}-\frac{9}{23}a^{9}-\frac{2}{23}a^{8}-\frac{7}{23}a^{7}+\frac{2}{23}a^{6}+\frac{9}{23}a^{5}+\frac{8}{23}a^{4}+\frac{1}{23}a^{3}-\frac{1}{23}a^{2}-\frac{2}{23}a$, $\frac{1}{23}a^{16}-\frac{8}{23}a^{14}-\frac{2}{23}a^{13}+\frac{1}{23}a^{12}-\frac{6}{23}a^{11}-\frac{4}{23}a^{10}-\frac{4}{23}a^{9}-\frac{10}{23}a^{8}+\frac{3}{23}a^{7}-\frac{11}{23}a^{6}+\frac{10}{23}a^{5}-\frac{10}{23}a^{4}-\frac{11}{23}a^{3}+\frac{8}{23}a^{2}-\frac{3}{23}a$, $\frac{1}{23}a^{17}+\frac{9}{23}a^{14}+\frac{1}{23}a^{13}+\frac{1}{23}a^{12}+\frac{5}{23}a^{11}-\frac{8}{23}a^{10}+\frac{10}{23}a^{9}+\frac{10}{23}a^{8}+\frac{2}{23}a^{7}+\frac{3}{23}a^{6}-\frac{7}{23}a^{5}+\frac{7}{23}a^{4}-\frac{7}{23}a^{3}-\frac{11}{23}a^{2}+\frac{7}{23}a$, $\frac{1}{23}a^{18}+\frac{3}{23}a^{14}+\frac{1}{23}a^{13}+\frac{2}{23}a^{11}+\frac{3}{23}a^{10}-\frac{1}{23}a^{9}-\frac{3}{23}a^{8}-\frac{3}{23}a^{7}-\frac{2}{23}a^{6}-\frac{5}{23}a^{5}-\frac{10}{23}a^{4}+\frac{3}{23}a^{3}-\frac{7}{23}a^{2}-\frac{5}{23}a$, $\frac{1}{23}a^{19}-\frac{6}{23}a^{14}+\frac{8}{23}a^{12}-\frac{9}{23}a^{11}-\frac{11}{23}a^{10}+\frac{1}{23}a^{9}+\frac{3}{23}a^{8}-\frac{4}{23}a^{7}-\frac{11}{23}a^{6}+\frac{9}{23}a^{5}+\frac{2}{23}a^{4}-\frac{10}{23}a^{3}-\frac{2}{23}a^{2}+\frac{6}{23}a$, $\frac{1}{437}a^{20}-\frac{2}{437}a^{19}+\frac{5}{437}a^{18}+\frac{2}{437}a^{17}-\frac{2}{437}a^{16}+\frac{4}{437}a^{15}-\frac{2}{19}a^{14}+\frac{65}{437}a^{13}+\frac{139}{437}a^{12}-\frac{13}{437}a^{11}-\frac{90}{437}a^{10}+\frac{187}{437}a^{9}+\frac{41}{437}a^{8}+\frac{25}{437}a^{7}-\frac{3}{19}a^{6}+\frac{15}{437}a^{5}-\frac{203}{437}a^{4}+\frac{51}{437}a^{3}-\frac{96}{437}a^{2}-\frac{14}{437}a+\frac{5}{19}$, $\frac{1}{437}a^{21}+\frac{1}{437}a^{19}-\frac{7}{437}a^{18}+\frac{2}{437}a^{17}-\frac{141}{437}a^{14}-\frac{187}{437}a^{13}+\frac{189}{437}a^{12}-\frac{2}{437}a^{11}-\frac{3}{19}a^{10}+\frac{4}{19}a^{9}+\frac{88}{437}a^{8}+\frac{11}{23}a^{7}-\frac{9}{437}a^{6}-\frac{173}{437}a^{5}+\frac{139}{437}a^{4}-\frac{13}{437}a^{3}-\frac{111}{437}a^{2}+\frac{106}{437}a-\frac{9}{19}$, $\frac{1}{10051}a^{22}+\frac{9}{10051}a^{21}+\frac{1}{10051}a^{20}+\frac{116}{10051}a^{19}-\frac{80}{10051}a^{18}+\frac{75}{10051}a^{17}-\frac{8}{529}a^{16}+\frac{182}{10051}a^{15}+\frac{2762}{10051}a^{14}+\frac{3218}{10051}a^{13}-\frac{3811}{10051}a^{12}+\frac{464}{10051}a^{11}-\frac{3816}{10051}a^{10}+\frac{631}{10051}a^{9}+\frac{659}{10051}a^{8}+\frac{4551}{10051}a^{7}-\frac{292}{10051}a^{6}-\frac{2805}{10051}a^{5}-\frac{2144}{10051}a^{4}+\frac{78}{529}a^{3}-\frac{212}{529}a^{2}+\frac{1735}{10051}a-\frac{214}{437}$, $\frac{1}{301459643}a^{23}-\frac{10242}{301459643}a^{22}+\frac{158005}{301459643}a^{21}-\frac{296140}{301459643}a^{20}-\frac{4784556}{301459643}a^{19}-\frac{5026100}{301459643}a^{18}-\frac{4802740}{301459643}a^{17}+\frac{5893788}{301459643}a^{16}-\frac{197153}{15866297}a^{15}-\frac{137621086}{301459643}a^{14}-\frac{84411893}{301459643}a^{13}+\frac{128739632}{301459643}a^{12}-\frac{126710466}{301459643}a^{11}+\frac{92284925}{301459643}a^{10}-\frac{115391122}{301459643}a^{9}-\frac{62114917}{301459643}a^{8}+\frac{7905828}{15866297}a^{7}-\frac{53649290}{301459643}a^{6}+\frac{28133786}{301459643}a^{5}+\frac{125175543}{301459643}a^{4}-\frac{102305428}{301459643}a^{3}+\frac{72882412}{301459643}a^{2}+\frac{38386886}{301459643}a+\frac{14261}{147269}$, $\frac{1}{86\!\cdots\!79}a^{24}-\frac{1023974903138}{86\!\cdots\!79}a^{23}+\frac{33\!\cdots\!14}{86\!\cdots\!79}a^{22}+\frac{10\!\cdots\!09}{86\!\cdots\!79}a^{21}-\frac{67\!\cdots\!84}{86\!\cdots\!79}a^{20}-\frac{42\!\cdots\!14}{86\!\cdots\!79}a^{19}-\frac{68\!\cdots\!79}{86\!\cdots\!79}a^{18}-\frac{16\!\cdots\!01}{86\!\cdots\!79}a^{17}+\frac{29\!\cdots\!10}{86\!\cdots\!79}a^{16}+\frac{18\!\cdots\!46}{86\!\cdots\!79}a^{15}+\frac{29\!\cdots\!00}{86\!\cdots\!79}a^{14}+\frac{20\!\cdots\!97}{86\!\cdots\!79}a^{13}+\frac{32\!\cdots\!65}{86\!\cdots\!79}a^{12}-\frac{24\!\cdots\!74}{45\!\cdots\!41}a^{11}+\frac{25\!\cdots\!60}{86\!\cdots\!79}a^{10}+\frac{23\!\cdots\!19}{86\!\cdots\!79}a^{9}-\frac{69\!\cdots\!90}{86\!\cdots\!79}a^{8}-\frac{30\!\cdots\!78}{86\!\cdots\!79}a^{7}+\frac{39\!\cdots\!54}{86\!\cdots\!79}a^{6}-\frac{72\!\cdots\!51}{86\!\cdots\!79}a^{5}+\frac{33\!\cdots\!80}{86\!\cdots\!79}a^{4}+\frac{55\!\cdots\!15}{86\!\cdots\!79}a^{3}+\frac{15\!\cdots\!21}{37\!\cdots\!73}a^{2}+\frac{27\!\cdots\!44}{86\!\cdots\!79}a+\frac{13\!\cdots\!43}{42\!\cdots\!57}$, $\frac{1}{76\!\cdots\!87}a^{25}-\frac{38\!\cdots\!16}{76\!\cdots\!87}a^{24}+\frac{10\!\cdots\!26}{76\!\cdots\!87}a^{23}-\frac{94\!\cdots\!74}{76\!\cdots\!87}a^{22}+\frac{26\!\cdots\!86}{33\!\cdots\!69}a^{21}-\frac{49\!\cdots\!57}{76\!\cdots\!87}a^{20}+\frac{10\!\cdots\!16}{76\!\cdots\!87}a^{19}-\frac{13\!\cdots\!62}{76\!\cdots\!87}a^{18}-\frac{12\!\cdots\!52}{76\!\cdots\!87}a^{17}+\frac{10\!\cdots\!69}{76\!\cdots\!87}a^{16}-\frac{73\!\cdots\!93}{76\!\cdots\!87}a^{15}+\frac{26\!\cdots\!82}{76\!\cdots\!87}a^{14}-\frac{67\!\cdots\!08}{76\!\cdots\!87}a^{13}-\frac{19\!\cdots\!65}{76\!\cdots\!87}a^{12}-\frac{71\!\cdots\!52}{40\!\cdots\!73}a^{11}-\frac{13\!\cdots\!14}{76\!\cdots\!87}a^{10}+\frac{13\!\cdots\!27}{76\!\cdots\!87}a^{9}+\frac{31\!\cdots\!06}{76\!\cdots\!87}a^{8}+\frac{61\!\cdots\!54}{76\!\cdots\!87}a^{7}+\frac{11\!\cdots\!81}{76\!\cdots\!87}a^{6}-\frac{32\!\cdots\!62}{76\!\cdots\!87}a^{5}+\frac{38\!\cdots\!77}{40\!\cdots\!73}a^{4}+\frac{29\!\cdots\!63}{76\!\cdots\!87}a^{3}-\frac{27\!\cdots\!21}{76\!\cdots\!87}a^{2}+\frac{82\!\cdots\!83}{76\!\cdots\!87}a+\frac{16\!\cdots\!59}{37\!\cdots\!21}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $23$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $25$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{46\!\cdots\!10}{32\!\cdots\!43}a^{25}-\frac{12\!\cdots\!88}{32\!\cdots\!43}a^{24}-\frac{24\!\cdots\!48}{95\!\cdots\!39}a^{23}+\frac{16\!\cdots\!66}{32\!\cdots\!43}a^{22}+\frac{27\!\cdots\!08}{13\!\cdots\!41}a^{21}-\frac{91\!\cdots\!93}{32\!\cdots\!43}a^{20}-\frac{25\!\cdots\!92}{32\!\cdots\!43}a^{19}+\frac{27\!\cdots\!91}{32\!\cdots\!43}a^{18}+\frac{65\!\cdots\!92}{32\!\cdots\!43}a^{17}-\frac{53\!\cdots\!32}{32\!\cdots\!43}a^{16}-\frac{10\!\cdots\!04}{32\!\cdots\!43}a^{15}+\frac{67\!\cdots\!80}{32\!\cdots\!43}a^{14}+\frac{11\!\cdots\!66}{32\!\cdots\!43}a^{13}-\frac{58\!\cdots\!26}{32\!\cdots\!43}a^{12}-\frac{74\!\cdots\!26}{32\!\cdots\!43}a^{11}+\frac{36\!\cdots\!92}{32\!\cdots\!43}a^{10}+\frac{31\!\cdots\!72}{32\!\cdots\!43}a^{9}-\frac{15\!\cdots\!71}{32\!\cdots\!43}a^{8}-\frac{79\!\cdots\!74}{32\!\cdots\!43}a^{7}+\frac{46\!\cdots\!56}{32\!\cdots\!43}a^{6}+\frac{10\!\cdots\!82}{32\!\cdots\!43}a^{5}-\frac{76\!\cdots\!25}{32\!\cdots\!43}a^{4}-\frac{54\!\cdots\!54}{32\!\cdots\!43}a^{3}+\frac{52\!\cdots\!25}{32\!\cdots\!43}a^{2}-\frac{56\!\cdots\!53}{32\!\cdots\!43}a-\frac{12\!\cdots\!25}{15\!\cdots\!69}$, $\frac{40\!\cdots\!64}{76\!\cdots\!87}a^{25}+\frac{43\!\cdots\!01}{76\!\cdots\!87}a^{24}-\frac{73\!\cdots\!10}{76\!\cdots\!87}a^{23}-\frac{60\!\cdots\!37}{76\!\cdots\!87}a^{22}+\frac{24\!\cdots\!88}{33\!\cdots\!69}a^{21}+\frac{74\!\cdots\!84}{76\!\cdots\!87}a^{20}-\frac{22\!\cdots\!98}{76\!\cdots\!87}a^{19}-\frac{38\!\cdots\!48}{76\!\cdots\!87}a^{18}+\frac{53\!\cdots\!58}{76\!\cdots\!87}a^{17}+\frac{10\!\cdots\!91}{76\!\cdots\!87}a^{16}-\frac{80\!\cdots\!76}{76\!\cdots\!87}a^{15}-\frac{18\!\cdots\!54}{76\!\cdots\!87}a^{14}+\frac{74\!\cdots\!30}{76\!\cdots\!87}a^{13}+\frac{18\!\cdots\!69}{76\!\cdots\!87}a^{12}-\frac{41\!\cdots\!02}{76\!\cdots\!87}a^{11}-\frac{11\!\cdots\!84}{76\!\cdots\!87}a^{10}+\frac{13\!\cdots\!02}{76\!\cdots\!87}a^{9}+\frac{42\!\cdots\!34}{76\!\cdots\!87}a^{8}-\frac{19\!\cdots\!42}{76\!\cdots\!87}a^{7}-\frac{81\!\cdots\!85}{76\!\cdots\!87}a^{6}+\frac{10\!\cdots\!48}{76\!\cdots\!87}a^{5}+\frac{75\!\cdots\!58}{76\!\cdots\!87}a^{4}-\frac{11\!\cdots\!70}{76\!\cdots\!87}a^{3}-\frac{27\!\cdots\!30}{76\!\cdots\!87}a^{2}+\frac{97\!\cdots\!20}{76\!\cdots\!87}a+\frac{16\!\cdots\!65}{37\!\cdots\!21}$, $\frac{17\!\cdots\!44}{76\!\cdots\!87}a^{25}-\frac{21\!\cdots\!19}{76\!\cdots\!87}a^{24}-\frac{32\!\cdots\!70}{76\!\cdots\!87}a^{23}+\frac{15\!\cdots\!38}{76\!\cdots\!87}a^{22}+\frac{10\!\cdots\!82}{33\!\cdots\!69}a^{21}+\frac{10\!\cdots\!34}{76\!\cdots\!87}a^{20}-\frac{99\!\cdots\!10}{76\!\cdots\!87}a^{19}-\frac{41\!\cdots\!12}{76\!\cdots\!87}a^{18}+\frac{24\!\cdots\!40}{76\!\cdots\!87}a^{17}+\frac{16\!\cdots\!25}{76\!\cdots\!87}a^{16}-\frac{38\!\cdots\!74}{76\!\cdots\!87}a^{15}-\frac{31\!\cdots\!07}{76\!\cdots\!87}a^{14}+\frac{38\!\cdots\!50}{76\!\cdots\!87}a^{13}+\frac{35\!\cdots\!95}{76\!\cdots\!87}a^{12}-\frac{24\!\cdots\!62}{76\!\cdots\!87}a^{11}-\frac{22\!\cdots\!51}{76\!\cdots\!87}a^{10}+\frac{92\!\cdots\!18}{76\!\cdots\!87}a^{9}+\frac{81\!\cdots\!81}{76\!\cdots\!87}a^{8}-\frac{20\!\cdots\!90}{76\!\cdots\!87}a^{7}-\frac{14\!\cdots\!55}{76\!\cdots\!87}a^{6}+\frac{24\!\cdots\!98}{76\!\cdots\!87}a^{5}+\frac{10\!\cdots\!53}{76\!\cdots\!87}a^{4}-\frac{13\!\cdots\!12}{76\!\cdots\!87}a^{3}-\frac{10\!\cdots\!27}{76\!\cdots\!87}a^{2}+\frac{78\!\cdots\!68}{76\!\cdots\!87}a+\frac{21\!\cdots\!97}{37\!\cdots\!21}$, $\frac{17\!\cdots\!32}{76\!\cdots\!87}a^{25}-\frac{20\!\cdots\!26}{76\!\cdots\!87}a^{24}-\frac{32\!\cdots\!32}{76\!\cdots\!87}a^{23}+\frac{15\!\cdots\!02}{85\!\cdots\!83}a^{22}+\frac{10\!\cdots\!12}{33\!\cdots\!69}a^{21}+\frac{21\!\cdots\!03}{76\!\cdots\!87}a^{20}-\frac{98\!\cdots\!60}{76\!\cdots\!87}a^{19}-\frac{13\!\cdots\!64}{22\!\cdots\!51}a^{18}+\frac{12\!\cdots\!84}{40\!\cdots\!73}a^{17}+\frac{17\!\cdots\!26}{76\!\cdots\!87}a^{16}-\frac{37\!\cdots\!72}{76\!\cdots\!87}a^{15}-\frac{32\!\cdots\!90}{76\!\cdots\!87}a^{14}+\frac{37\!\cdots\!84}{76\!\cdots\!87}a^{13}+\frac{35\!\cdots\!48}{76\!\cdots\!87}a^{12}-\frac{22\!\cdots\!76}{76\!\cdots\!87}a^{11}-\frac{21\!\cdots\!60}{76\!\cdots\!87}a^{10}+\frac{85\!\cdots\!00}{76\!\cdots\!87}a^{9}+\frac{74\!\cdots\!36}{76\!\cdots\!87}a^{8}-\frac{18\!\cdots\!28}{76\!\cdots\!87}a^{7}-\frac{11\!\cdots\!22}{76\!\cdots\!87}a^{6}+\frac{21\!\cdots\!52}{76\!\cdots\!87}a^{5}+\frac{31\!\cdots\!40}{40\!\cdots\!73}a^{4}-\frac{10\!\cdots\!40}{76\!\cdots\!87}a^{3}+\frac{14\!\cdots\!22}{76\!\cdots\!87}a^{2}+\frac{22\!\cdots\!20}{76\!\cdots\!87}a+\frac{16\!\cdots\!71}{37\!\cdots\!21}$, $\frac{37\!\cdots\!26}{40\!\cdots\!73}a^{25}-\frac{35\!\cdots\!59}{76\!\cdots\!87}a^{24}-\frac{65\!\cdots\!98}{40\!\cdots\!73}a^{23}+\frac{54\!\cdots\!26}{76\!\cdots\!87}a^{22}+\frac{39\!\cdots\!06}{33\!\cdots\!69}a^{21}-\frac{35\!\cdots\!41}{76\!\cdots\!87}a^{20}-\frac{38\!\cdots\!46}{76\!\cdots\!87}a^{19}+\frac{13\!\cdots\!79}{76\!\cdots\!87}a^{18}+\frac{98\!\cdots\!48}{76\!\cdots\!87}a^{17}-\frac{30\!\cdots\!53}{76\!\cdots\!87}a^{16}-\frac{16\!\cdots\!82}{76\!\cdots\!87}a^{15}+\frac{44\!\cdots\!09}{76\!\cdots\!87}a^{14}+\frac{18\!\cdots\!96}{76\!\cdots\!87}a^{13}-\frac{43\!\cdots\!13}{76\!\cdots\!87}a^{12}-\frac{13\!\cdots\!48}{76\!\cdots\!87}a^{11}+\frac{26\!\cdots\!85}{76\!\cdots\!87}a^{10}+\frac{60\!\cdots\!98}{76\!\cdots\!87}a^{9}-\frac{10\!\cdots\!92}{76\!\cdots\!87}a^{8}-\frac{17\!\cdots\!64}{76\!\cdots\!87}a^{7}+\frac{24\!\cdots\!23}{76\!\cdots\!87}a^{6}+\frac{25\!\cdots\!36}{76\!\cdots\!87}a^{5}-\frac{30\!\cdots\!26}{76\!\cdots\!87}a^{4}-\frac{16\!\cdots\!14}{76\!\cdots\!87}a^{3}+\frac{86\!\cdots\!28}{40\!\cdots\!73}a^{2}+\frac{93\!\cdots\!18}{76\!\cdots\!87}a+\frac{57\!\cdots\!66}{37\!\cdots\!21}$, $\frac{23\!\cdots\!08}{76\!\cdots\!87}a^{25}-\frac{86\!\cdots\!84}{76\!\cdots\!87}a^{24}-\frac{40\!\cdots\!06}{76\!\cdots\!87}a^{23}+\frac{12\!\cdots\!92}{76\!\cdots\!87}a^{22}+\frac{13\!\cdots\!22}{33\!\cdots\!69}a^{21}-\frac{76\!\cdots\!28}{76\!\cdots\!87}a^{20}-\frac{12\!\cdots\!74}{76\!\cdots\!87}a^{19}+\frac{26\!\cdots\!02}{76\!\cdots\!87}a^{18}+\frac{30\!\cdots\!64}{76\!\cdots\!87}a^{17}-\frac{56\!\cdots\!96}{76\!\cdots\!87}a^{16}-\frac{49\!\cdots\!06}{76\!\cdots\!87}a^{15}+\frac{79\!\cdots\!16}{76\!\cdots\!87}a^{14}+\frac{51\!\cdots\!74}{76\!\cdots\!87}a^{13}-\frac{74\!\cdots\!44}{76\!\cdots\!87}a^{12}-\frac{34\!\cdots\!36}{76\!\cdots\!87}a^{11}+\frac{45\!\cdots\!61}{76\!\cdots\!87}a^{10}+\frac{14\!\cdots\!36}{76\!\cdots\!87}a^{9}-\frac{94\!\cdots\!88}{40\!\cdots\!73}a^{8}-\frac{34\!\cdots\!64}{76\!\cdots\!87}a^{7}+\frac{43\!\cdots\!44}{76\!\cdots\!87}a^{6}+\frac{41\!\cdots\!18}{76\!\cdots\!87}a^{5}-\frac{56\!\cdots\!60}{76\!\cdots\!87}a^{4}-\frac{15\!\cdots\!08}{76\!\cdots\!87}a^{3}+\frac{16\!\cdots\!50}{40\!\cdots\!73}a^{2}-\frac{58\!\cdots\!66}{76\!\cdots\!87}a-\frac{77\!\cdots\!29}{37\!\cdots\!21}$, $\frac{20\!\cdots\!70}{76\!\cdots\!87}a^{25}-\frac{28\!\cdots\!76}{76\!\cdots\!87}a^{24}-\frac{36\!\cdots\!10}{76\!\cdots\!87}a^{23}+\frac{24\!\cdots\!17}{76\!\cdots\!87}a^{22}+\frac{12\!\cdots\!64}{33\!\cdots\!69}a^{21}-\frac{38\!\cdots\!61}{76\!\cdots\!87}a^{20}-\frac{11\!\cdots\!62}{76\!\cdots\!87}a^{19}-\frac{26\!\cdots\!07}{76\!\cdots\!87}a^{18}+\frac{28\!\cdots\!30}{76\!\cdots\!87}a^{17}+\frac{13\!\cdots\!79}{76\!\cdots\!87}a^{16}-\frac{43\!\cdots\!36}{76\!\cdots\!87}a^{15}-\frac{28\!\cdots\!20}{76\!\cdots\!87}a^{14}+\frac{43\!\cdots\!80}{76\!\cdots\!87}a^{13}+\frac{31\!\cdots\!55}{76\!\cdots\!87}a^{12}-\frac{27\!\cdots\!84}{76\!\cdots\!87}a^{11}-\frac{20\!\cdots\!34}{76\!\cdots\!87}a^{10}+\frac{10\!\cdots\!78}{76\!\cdots\!87}a^{9}+\frac{70\!\cdots\!87}{76\!\cdots\!87}a^{8}-\frac{24\!\cdots\!20}{76\!\cdots\!87}a^{7}-\frac{12\!\cdots\!07}{85\!\cdots\!83}a^{6}+\frac{29\!\cdots\!90}{76\!\cdots\!87}a^{5}+\frac{55\!\cdots\!36}{76\!\cdots\!87}a^{4}-\frac{15\!\cdots\!36}{76\!\cdots\!87}a^{3}+\frac{10\!\cdots\!57}{40\!\cdots\!73}a^{2}+\frac{36\!\cdots\!02}{76\!\cdots\!87}a+\frac{84\!\cdots\!80}{37\!\cdots\!21}$, $\frac{59\!\cdots\!84}{22\!\cdots\!51}a^{25}-\frac{40\!\cdots\!55}{76\!\cdots\!87}a^{24}-\frac{35\!\cdots\!18}{76\!\cdots\!87}a^{23}+\frac{44\!\cdots\!19}{76\!\cdots\!87}a^{22}+\frac{11\!\cdots\!32}{33\!\cdots\!69}a^{21}-\frac{19\!\cdots\!92}{76\!\cdots\!87}a^{20}-\frac{10\!\cdots\!86}{76\!\cdots\!87}a^{19}+\frac{38\!\cdots\!12}{76\!\cdots\!87}a^{18}+\frac{12\!\cdots\!26}{40\!\cdots\!73}a^{17}-\frac{35\!\cdots\!82}{76\!\cdots\!87}a^{16}-\frac{35\!\cdots\!88}{76\!\cdots\!87}a^{15}+\frac{15\!\cdots\!60}{76\!\cdots\!87}a^{14}+\frac{31\!\cdots\!34}{76\!\cdots\!87}a^{13}-\frac{22\!\cdots\!87}{76\!\cdots\!87}a^{12}-\frac{16\!\cdots\!22}{76\!\cdots\!87}a^{11}+\frac{51\!\cdots\!90}{76\!\cdots\!87}a^{10}+\frac{46\!\cdots\!66}{76\!\cdots\!87}a^{9}-\frac{49\!\cdots\!41}{76\!\cdots\!87}a^{8}-\frac{46\!\cdots\!86}{76\!\cdots\!87}a^{7}+\frac{11\!\cdots\!15}{40\!\cdots\!73}a^{6}-\frac{11\!\cdots\!68}{40\!\cdots\!73}a^{5}-\frac{39\!\cdots\!04}{76\!\cdots\!87}a^{4}+\frac{70\!\cdots\!14}{76\!\cdots\!87}a^{3}+\frac{12\!\cdots\!38}{40\!\cdots\!73}a^{2}-\frac{49\!\cdots\!44}{76\!\cdots\!87}a-\frac{37\!\cdots\!61}{37\!\cdots\!21}$, $\frac{47\!\cdots\!20}{76\!\cdots\!87}a^{25}-\frac{37\!\cdots\!03}{76\!\cdots\!87}a^{24}-\frac{86\!\cdots\!06}{76\!\cdots\!87}a^{23}+\frac{59\!\cdots\!50}{76\!\cdots\!87}a^{22}+\frac{28\!\cdots\!66}{33\!\cdots\!69}a^{21}+\frac{29\!\cdots\!02}{76\!\cdots\!87}a^{20}-\frac{26\!\cdots\!30}{76\!\cdots\!87}a^{19}-\frac{21\!\cdots\!80}{76\!\cdots\!87}a^{18}+\frac{64\!\cdots\!24}{76\!\cdots\!87}a^{17}+\frac{69\!\cdots\!43}{76\!\cdots\!87}a^{16}-\frac{98\!\cdots\!58}{76\!\cdots\!87}a^{15}-\frac{12\!\cdots\!85}{76\!\cdots\!87}a^{14}+\frac{95\!\cdots\!78}{76\!\cdots\!87}a^{13}+\frac{12\!\cdots\!43}{76\!\cdots\!87}a^{12}-\frac{57\!\cdots\!50}{76\!\cdots\!87}a^{11}-\frac{42\!\cdots\!47}{40\!\cdots\!73}a^{10}+\frac{20\!\cdots\!90}{76\!\cdots\!87}a^{9}+\frac{27\!\cdots\!30}{76\!\cdots\!87}a^{8}-\frac{40\!\cdots\!94}{76\!\cdots\!87}a^{7}-\frac{47\!\cdots\!79}{76\!\cdots\!87}a^{6}+\frac{42\!\cdots\!22}{76\!\cdots\!87}a^{5}+\frac{32\!\cdots\!50}{76\!\cdots\!87}a^{4}-\frac{19\!\cdots\!72}{76\!\cdots\!87}a^{3}-\frac{31\!\cdots\!87}{76\!\cdots\!87}a^{2}+\frac{22\!\cdots\!84}{76\!\cdots\!87}a+\frac{47\!\cdots\!57}{37\!\cdots\!21}$, $\frac{10\!\cdots\!82}{76\!\cdots\!87}a^{25}-\frac{39\!\cdots\!66}{76\!\cdots\!87}a^{24}-\frac{18\!\cdots\!98}{76\!\cdots\!87}a^{23}-\frac{62\!\cdots\!28}{76\!\cdots\!87}a^{22}+\frac{60\!\cdots\!12}{33\!\cdots\!69}a^{21}+\frac{12\!\cdots\!77}{76\!\cdots\!87}a^{20}-\frac{56\!\cdots\!96}{76\!\cdots\!87}a^{19}-\frac{70\!\cdots\!95}{76\!\cdots\!87}a^{18}+\frac{13\!\cdots\!92}{76\!\cdots\!87}a^{17}+\frac{21\!\cdots\!09}{76\!\cdots\!87}a^{16}-\frac{24\!\cdots\!74}{85\!\cdots\!83}a^{15}-\frac{36\!\cdots\!17}{76\!\cdots\!87}a^{14}+\frac{20\!\cdots\!84}{76\!\cdots\!87}a^{13}+\frac{38\!\cdots\!31}{76\!\cdots\!87}a^{12}-\frac{12\!\cdots\!52}{76\!\cdots\!87}a^{11}-\frac{24\!\cdots\!35}{76\!\cdots\!87}a^{10}+\frac{45\!\cdots\!36}{76\!\cdots\!87}a^{9}+\frac{94\!\cdots\!00}{76\!\cdots\!87}a^{8}-\frac{92\!\cdots\!76}{76\!\cdots\!87}a^{7}-\frac{19\!\cdots\!95}{76\!\cdots\!87}a^{6}+\frac{10\!\cdots\!10}{76\!\cdots\!87}a^{5}+\frac{19\!\cdots\!75}{76\!\cdots\!87}a^{4}-\frac{64\!\cdots\!32}{76\!\cdots\!87}a^{3}-\frac{91\!\cdots\!37}{85\!\cdots\!83}a^{2}+\frac{20\!\cdots\!90}{76\!\cdots\!87}a+\frac{33\!\cdots\!14}{37\!\cdots\!21}$, $\frac{53\!\cdots\!88}{76\!\cdots\!87}a^{25}+\frac{44\!\cdots\!68}{76\!\cdots\!87}a^{24}-\frac{98\!\cdots\!14}{76\!\cdots\!87}a^{23}-\frac{14\!\cdots\!51}{76\!\cdots\!87}a^{22}+\frac{32\!\cdots\!42}{33\!\cdots\!69}a^{21}+\frac{15\!\cdots\!30}{76\!\cdots\!87}a^{20}-\frac{30\!\cdots\!84}{76\!\cdots\!87}a^{19}-\frac{73\!\cdots\!30}{76\!\cdots\!87}a^{18}+\frac{73\!\cdots\!94}{76\!\cdots\!87}a^{17}+\frac{20\!\cdots\!15}{76\!\cdots\!87}a^{16}-\frac{10\!\cdots\!24}{76\!\cdots\!87}a^{15}-\frac{33\!\cdots\!72}{76\!\cdots\!87}a^{14}+\frac{10\!\cdots\!30}{76\!\cdots\!87}a^{13}+\frac{34\!\cdots\!99}{76\!\cdots\!87}a^{12}-\frac{57\!\cdots\!58}{76\!\cdots\!87}a^{11}-\frac{22\!\cdots\!52}{76\!\cdots\!87}a^{10}+\frac{18\!\cdots\!52}{76\!\cdots\!87}a^{9}+\frac{84\!\cdots\!86}{76\!\cdots\!87}a^{8}-\frac{27\!\cdots\!58}{76\!\cdots\!87}a^{7}-\frac{18\!\cdots\!37}{76\!\cdots\!87}a^{6}+\frac{18\!\cdots\!78}{76\!\cdots\!87}a^{5}+\frac{20\!\cdots\!77}{76\!\cdots\!87}a^{4}-\frac{14\!\cdots\!60}{76\!\cdots\!87}a^{3}-\frac{93\!\cdots\!51}{76\!\cdots\!87}a^{2}+\frac{14\!\cdots\!96}{76\!\cdots\!87}a+\frac{10\!\cdots\!72}{37\!\cdots\!21}$, $\frac{56\!\cdots\!74}{76\!\cdots\!87}a^{25}+\frac{28\!\cdots\!49}{76\!\cdots\!87}a^{24}-\frac{11\!\cdots\!74}{76\!\cdots\!87}a^{23}-\frac{58\!\cdots\!10}{76\!\cdots\!87}a^{22}+\frac{44\!\cdots\!64}{37\!\cdots\!21}a^{21}+\frac{48\!\cdots\!23}{76\!\cdots\!87}a^{20}-\frac{39\!\cdots\!80}{76\!\cdots\!87}a^{19}-\frac{21\!\cdots\!47}{76\!\cdots\!87}a^{18}+\frac{10\!\cdots\!96}{76\!\cdots\!87}a^{17}+\frac{57\!\cdots\!13}{76\!\cdots\!87}a^{16}-\frac{17\!\cdots\!94}{76\!\cdots\!87}a^{15}-\frac{96\!\cdots\!21}{76\!\cdots\!87}a^{14}+\frac{18\!\cdots\!08}{76\!\cdots\!87}a^{13}+\frac{11\!\cdots\!78}{85\!\cdots\!83}a^{12}-\frac{13\!\cdots\!72}{76\!\cdots\!87}a^{11}-\frac{72\!\cdots\!79}{76\!\cdots\!87}a^{10}+\frac{56\!\cdots\!64}{76\!\cdots\!87}a^{9}+\frac{31\!\cdots\!28}{76\!\cdots\!87}a^{8}-\frac{14\!\cdots\!24}{76\!\cdots\!87}a^{7}-\frac{81\!\cdots\!49}{76\!\cdots\!87}a^{6}+\frac{22\!\cdots\!10}{76\!\cdots\!87}a^{5}+\frac{10\!\cdots\!78}{76\!\cdots\!87}a^{4}-\frac{21\!\cdots\!60}{76\!\cdots\!87}a^{3}-\frac{58\!\cdots\!37}{76\!\cdots\!87}a^{2}+\frac{12\!\cdots\!38}{76\!\cdots\!87}a+\frac{11\!\cdots\!20}{37\!\cdots\!21}$, $\frac{78\!\cdots\!18}{76\!\cdots\!87}a^{25}-\frac{90\!\cdots\!27}{76\!\cdots\!87}a^{24}-\frac{14\!\cdots\!64}{76\!\cdots\!87}a^{23}+\frac{60\!\cdots\!45}{76\!\cdots\!87}a^{22}+\frac{45\!\cdots\!38}{33\!\cdots\!69}a^{21}+\frac{10\!\cdots\!51}{76\!\cdots\!87}a^{20}-\frac{42\!\cdots\!52}{76\!\cdots\!87}a^{19}-\frac{10\!\cdots\!04}{40\!\cdots\!73}a^{18}+\frac{10\!\cdots\!58}{76\!\cdots\!87}a^{17}+\frac{76\!\cdots\!93}{76\!\cdots\!87}a^{16}-\frac{15\!\cdots\!04}{76\!\cdots\!87}a^{15}-\frac{14\!\cdots\!87}{76\!\cdots\!87}a^{14}+\frac{15\!\cdots\!08}{76\!\cdots\!87}a^{13}+\frac{15\!\cdots\!62}{76\!\cdots\!87}a^{12}-\frac{90\!\cdots\!56}{76\!\cdots\!87}a^{11}-\frac{93\!\cdots\!50}{76\!\cdots\!87}a^{10}+\frac{31\!\cdots\!56}{76\!\cdots\!87}a^{9}+\frac{31\!\cdots\!65}{76\!\cdots\!87}a^{8}-\frac{61\!\cdots\!14}{76\!\cdots\!87}a^{7}-\frac{47\!\cdots\!27}{76\!\cdots\!87}a^{6}+\frac{59\!\cdots\!54}{76\!\cdots\!87}a^{5}+\frac{20\!\cdots\!76}{76\!\cdots\!87}a^{4}-\frac{24\!\cdots\!52}{76\!\cdots\!87}a^{3}+\frac{67\!\cdots\!52}{76\!\cdots\!87}a^{2}-\frac{96\!\cdots\!22}{76\!\cdots\!87}a-\frac{12\!\cdots\!74}{11\!\cdots\!33}$, $\frac{73\!\cdots\!80}{76\!\cdots\!87}a^{25}-\frac{30\!\cdots\!15}{76\!\cdots\!87}a^{24}-\frac{13\!\cdots\!06}{76\!\cdots\!87}a^{23}+\frac{44\!\cdots\!31}{76\!\cdots\!87}a^{22}+\frac{42\!\cdots\!99}{33\!\cdots\!69}a^{21}-\frac{28\!\cdots\!63}{76\!\cdots\!87}a^{20}-\frac{21\!\cdots\!74}{40\!\cdots\!73}a^{19}+\frac{98\!\cdots\!25}{76\!\cdots\!87}a^{18}+\frac{10\!\cdots\!26}{76\!\cdots\!87}a^{17}-\frac{21\!\cdots\!87}{76\!\cdots\!87}a^{16}-\frac{95\!\cdots\!70}{40\!\cdots\!73}a^{15}+\frac{28\!\cdots\!40}{76\!\cdots\!87}a^{14}+\frac{20\!\cdots\!21}{76\!\cdots\!87}a^{13}-\frac{25\!\cdots\!05}{76\!\cdots\!87}a^{12}-\frac{14\!\cdots\!26}{76\!\cdots\!87}a^{11}+\frac{13\!\cdots\!48}{76\!\cdots\!87}a^{10}+\frac{66\!\cdots\!61}{76\!\cdots\!87}a^{9}-\frac{44\!\cdots\!42}{76\!\cdots\!87}a^{8}-\frac{18\!\cdots\!31}{76\!\cdots\!87}a^{7}+\frac{78\!\cdots\!54}{76\!\cdots\!87}a^{6}+\frac{25\!\cdots\!94}{76\!\cdots\!87}a^{5}-\frac{72\!\cdots\!67}{76\!\cdots\!87}a^{4}-\frac{14\!\cdots\!64}{76\!\cdots\!87}a^{3}+\frac{33\!\cdots\!15}{76\!\cdots\!87}a^{2}+\frac{21\!\cdots\!30}{40\!\cdots\!73}a+\frac{31\!\cdots\!69}{37\!\cdots\!21}$, $\frac{27\!\cdots\!79}{76\!\cdots\!87}a^{25}+\frac{60\!\cdots\!71}{76\!\cdots\!87}a^{24}-\frac{51\!\cdots\!99}{76\!\cdots\!87}a^{23}-\frac{14\!\cdots\!44}{76\!\cdots\!87}a^{22}+\frac{17\!\cdots\!86}{33\!\cdots\!69}a^{21}+\frac{12\!\cdots\!87}{76\!\cdots\!87}a^{20}-\frac{16\!\cdots\!94}{76\!\cdots\!87}a^{19}-\frac{57\!\cdots\!84}{76\!\cdots\!87}a^{18}+\frac{40\!\cdots\!93}{76\!\cdots\!87}a^{17}+\frac{15\!\cdots\!49}{76\!\cdots\!87}a^{16}-\frac{62\!\cdots\!48}{76\!\cdots\!87}a^{15}-\frac{24\!\cdots\!23}{76\!\cdots\!87}a^{14}+\frac{60\!\cdots\!66}{76\!\cdots\!87}a^{13}+\frac{25\!\cdots\!90}{76\!\cdots\!87}a^{12}-\frac{35\!\cdots\!13}{76\!\cdots\!87}a^{11}-\frac{16\!\cdots\!52}{76\!\cdots\!87}a^{10}+\frac{12\!\cdots\!63}{76\!\cdots\!87}a^{9}+\frac{63\!\cdots\!38}{76\!\cdots\!87}a^{8}-\frac{23\!\cdots\!83}{76\!\cdots\!87}a^{7}-\frac{13\!\cdots\!95}{76\!\cdots\!87}a^{6}+\frac{26\!\cdots\!85}{76\!\cdots\!87}a^{5}+\frac{15\!\cdots\!23}{76\!\cdots\!87}a^{4}-\frac{23\!\cdots\!34}{76\!\cdots\!87}a^{3}-\frac{69\!\cdots\!46}{76\!\cdots\!87}a^{2}+\frac{13\!\cdots\!86}{76\!\cdots\!87}a+\frac{55\!\cdots\!83}{37\!\cdots\!21}$, $\frac{62\!\cdots\!67}{76\!\cdots\!87}a^{25}-\frac{11\!\cdots\!84}{76\!\cdots\!87}a^{24}-\frac{11\!\cdots\!03}{76\!\cdots\!87}a^{23}+\frac{13\!\cdots\!63}{76\!\cdots\!87}a^{22}+\frac{43\!\cdots\!61}{37\!\cdots\!21}a^{21}-\frac{53\!\cdots\!15}{76\!\cdots\!87}a^{20}-\frac{38\!\cdots\!47}{76\!\cdots\!87}a^{19}+\frac{69\!\cdots\!27}{76\!\cdots\!87}a^{18}+\frac{10\!\cdots\!99}{76\!\cdots\!87}a^{17}+\frac{14\!\cdots\!96}{76\!\cdots\!87}a^{16}-\frac{17\!\cdots\!65}{76\!\cdots\!87}a^{15}-\frac{67\!\cdots\!36}{76\!\cdots\!87}a^{14}+\frac{19\!\cdots\!37}{76\!\cdots\!87}a^{13}+\frac{11\!\cdots\!61}{76\!\cdots\!87}a^{12}-\frac{14\!\cdots\!16}{76\!\cdots\!87}a^{11}-\frac{10\!\cdots\!77}{76\!\cdots\!87}a^{10}+\frac{74\!\cdots\!85}{85\!\cdots\!83}a^{9}+\frac{57\!\cdots\!24}{76\!\cdots\!87}a^{8}-\frac{18\!\cdots\!23}{76\!\cdots\!87}a^{7}-\frac{17\!\cdots\!34}{76\!\cdots\!87}a^{6}+\frac{27\!\cdots\!53}{76\!\cdots\!87}a^{5}+\frac{26\!\cdots\!14}{76\!\cdots\!87}a^{4}-\frac{10\!\cdots\!27}{40\!\cdots\!73}a^{3}-\frac{14\!\cdots\!19}{76\!\cdots\!87}a^{2}+\frac{45\!\cdots\!83}{76\!\cdots\!87}a+\frac{12\!\cdots\!21}{37\!\cdots\!21}$, $\frac{11\!\cdots\!34}{76\!\cdots\!87}a^{25}+\frac{37\!\cdots\!03}{76\!\cdots\!87}a^{24}-\frac{21\!\cdots\!01}{76\!\cdots\!87}a^{23}-\frac{21\!\cdots\!44}{76\!\cdots\!87}a^{22}+\frac{68\!\cdots\!54}{33\!\cdots\!69}a^{21}+\frac{24\!\cdots\!25}{76\!\cdots\!87}a^{20}-\frac{64\!\cdots\!88}{76\!\cdots\!87}a^{19}-\frac{12\!\cdots\!54}{76\!\cdots\!87}a^{18}+\frac{15\!\cdots\!19}{76\!\cdots\!87}a^{17}+\frac{34\!\cdots\!01}{76\!\cdots\!87}a^{16}-\frac{23\!\cdots\!31}{76\!\cdots\!87}a^{15}-\frac{57\!\cdots\!14}{76\!\cdots\!87}a^{14}+\frac{21\!\cdots\!68}{76\!\cdots\!87}a^{13}+\frac{59\!\cdots\!73}{76\!\cdots\!87}a^{12}-\frac{12\!\cdots\!57}{76\!\cdots\!87}a^{11}-\frac{37\!\cdots\!09}{76\!\cdots\!87}a^{10}+\frac{37\!\cdots\!28}{76\!\cdots\!87}a^{9}+\frac{13\!\cdots\!02}{76\!\cdots\!87}a^{8}-\frac{51\!\cdots\!55}{76\!\cdots\!87}a^{7}-\frac{27\!\cdots\!14}{76\!\cdots\!87}a^{6}+\frac{57\!\cdots\!34}{40\!\cdots\!73}a^{5}+\frac{27\!\cdots\!90}{76\!\cdots\!87}a^{4}+\frac{26\!\cdots\!80}{76\!\cdots\!87}a^{3}-\frac{10\!\cdots\!06}{76\!\cdots\!87}a^{2}-\frac{11\!\cdots\!64}{76\!\cdots\!87}a-\frac{49\!\cdots\!17}{37\!\cdots\!21}$, $\frac{12\!\cdots\!13}{76\!\cdots\!87}a^{25}+\frac{60\!\cdots\!89}{40\!\cdots\!73}a^{24}-\frac{22\!\cdots\!59}{76\!\cdots\!87}a^{23}-\frac{36\!\cdots\!77}{76\!\cdots\!87}a^{22}+\frac{74\!\cdots\!38}{33\!\cdots\!69}a^{21}+\frac{36\!\cdots\!86}{76\!\cdots\!87}a^{20}-\frac{68\!\cdots\!00}{76\!\cdots\!87}a^{19}-\frac{92\!\cdots\!38}{40\!\cdots\!73}a^{18}+\frac{16\!\cdots\!46}{76\!\cdots\!87}a^{17}+\frac{47\!\cdots\!99}{76\!\cdots\!87}a^{16}-\frac{24\!\cdots\!66}{76\!\cdots\!87}a^{15}-\frac{78\!\cdots\!31}{76\!\cdots\!87}a^{14}+\frac{21\!\cdots\!65}{76\!\cdots\!87}a^{13}+\frac{80\!\cdots\!20}{76\!\cdots\!87}a^{12}-\frac{10\!\cdots\!71}{76\!\cdots\!87}a^{11}-\frac{50\!\cdots\!89}{76\!\cdots\!87}a^{10}+\frac{26\!\cdots\!45}{76\!\cdots\!87}a^{9}+\frac{18\!\cdots\!08}{76\!\cdots\!87}a^{8}-\frac{83\!\cdots\!78}{76\!\cdots\!87}a^{7}-\frac{35\!\cdots\!11}{76\!\cdots\!87}a^{6}-\frac{65\!\cdots\!62}{76\!\cdots\!87}a^{5}+\frac{34\!\cdots\!43}{76\!\cdots\!87}a^{4}+\frac{80\!\cdots\!04}{76\!\cdots\!87}a^{3}-\frac{13\!\cdots\!39}{76\!\cdots\!87}a^{2}-\frac{19\!\cdots\!18}{76\!\cdots\!87}a-\frac{27\!\cdots\!34}{37\!\cdots\!21}$, $\frac{22\!\cdots\!32}{76\!\cdots\!87}a^{25}-\frac{10\!\cdots\!97}{76\!\cdots\!87}a^{24}-\frac{40\!\cdots\!09}{76\!\cdots\!87}a^{23}-\frac{97\!\cdots\!11}{76\!\cdots\!87}a^{22}+\frac{13\!\cdots\!18}{33\!\cdots\!69}a^{21}+\frac{23\!\cdots\!11}{76\!\cdots\!87}a^{20}-\frac{12\!\cdots\!10}{76\!\cdots\!87}a^{19}-\frac{14\!\cdots\!77}{76\!\cdots\!87}a^{18}+\frac{30\!\cdots\!67}{76\!\cdots\!87}a^{17}+\frac{43\!\cdots\!98}{76\!\cdots\!87}a^{16}-\frac{47\!\cdots\!05}{76\!\cdots\!87}a^{15}-\frac{76\!\cdots\!09}{76\!\cdots\!87}a^{14}+\frac{46\!\cdots\!30}{76\!\cdots\!87}a^{13}+\frac{80\!\cdots\!12}{76\!\cdots\!87}a^{12}-\frac{28\!\cdots\!40}{76\!\cdots\!87}a^{11}-\frac{52\!\cdots\!26}{76\!\cdots\!87}a^{10}+\frac{10\!\cdots\!35}{76\!\cdots\!87}a^{9}+\frac{19\!\cdots\!44}{76\!\cdots\!87}a^{8}-\frac{20\!\cdots\!23}{76\!\cdots\!87}a^{7}-\frac{40\!\cdots\!91}{76\!\cdots\!87}a^{6}+\frac{23\!\cdots\!16}{76\!\cdots\!87}a^{5}+\frac{42\!\cdots\!12}{76\!\cdots\!87}a^{4}-\frac{15\!\cdots\!00}{76\!\cdots\!87}a^{3}-\frac{17\!\cdots\!56}{76\!\cdots\!87}a^{2}+\frac{48\!\cdots\!81}{76\!\cdots\!87}a+\frac{28\!\cdots\!29}{37\!\cdots\!21}$, $\frac{39\!\cdots\!86}{76\!\cdots\!87}a^{25}-\frac{12\!\cdots\!71}{76\!\cdots\!87}a^{24}-\frac{69\!\cdots\!09}{76\!\cdots\!87}a^{23}+\frac{17\!\cdots\!13}{76\!\cdots\!87}a^{22}+\frac{22\!\cdots\!67}{33\!\cdots\!69}a^{21}-\frac{10\!\cdots\!27}{76\!\cdots\!87}a^{20}-\frac{21\!\cdots\!48}{76\!\cdots\!87}a^{19}+\frac{33\!\cdots\!84}{76\!\cdots\!87}a^{18}+\frac{52\!\cdots\!20}{76\!\cdots\!87}a^{17}-\frac{69\!\cdots\!91}{76\!\cdots\!87}a^{16}-\frac{83\!\cdots\!99}{76\!\cdots\!87}a^{15}+\frac{94\!\cdots\!32}{76\!\cdots\!87}a^{14}+\frac{85\!\cdots\!73}{76\!\cdots\!87}a^{13}-\frac{86\!\cdots\!41}{76\!\cdots\!87}a^{12}-\frac{56\!\cdots\!36}{76\!\cdots\!87}a^{11}+\frac{59\!\cdots\!60}{85\!\cdots\!83}a^{10}+\frac{22\!\cdots\!83}{76\!\cdots\!87}a^{9}-\frac{21\!\cdots\!83}{76\!\cdots\!87}a^{8}-\frac{53\!\cdots\!63}{76\!\cdots\!87}a^{7}+\frac{52\!\cdots\!02}{76\!\cdots\!87}a^{6}+\frac{64\!\cdots\!10}{76\!\cdots\!87}a^{5}-\frac{71\!\cdots\!91}{76\!\cdots\!87}a^{4}-\frac{26\!\cdots\!80}{76\!\cdots\!87}a^{3}+\frac{40\!\cdots\!24}{76\!\cdots\!87}a^{2}-\frac{77\!\cdots\!83}{76\!\cdots\!87}a-\frac{62\!\cdots\!15}{37\!\cdots\!21}$, $\frac{19\!\cdots\!55}{76\!\cdots\!87}a^{25}-\frac{38\!\cdots\!16}{76\!\cdots\!87}a^{24}-\frac{35\!\cdots\!97}{76\!\cdots\!87}a^{23}-\frac{18\!\cdots\!13}{76\!\cdots\!87}a^{22}+\frac{11\!\cdots\!55}{33\!\cdots\!69}a^{21}+\frac{27\!\cdots\!74}{76\!\cdots\!87}a^{20}-\frac{10\!\cdots\!46}{76\!\cdots\!87}a^{19}-\frac{15\!\cdots\!96}{76\!\cdots\!87}a^{18}+\frac{26\!\cdots\!44}{76\!\cdots\!87}a^{17}+\frac{45\!\cdots\!61}{76\!\cdots\!87}a^{16}-\frac{41\!\cdots\!70}{76\!\cdots\!87}a^{15}-\frac{77\!\cdots\!00}{76\!\cdots\!87}a^{14}+\frac{40\!\cdots\!32}{76\!\cdots\!87}a^{13}+\frac{82\!\cdots\!17}{76\!\cdots\!87}a^{12}-\frac{24\!\cdots\!79}{76\!\cdots\!87}a^{11}-\frac{53\!\cdots\!33}{76\!\cdots\!87}a^{10}+\frac{87\!\cdots\!11}{76\!\cdots\!87}a^{9}+\frac{20\!\cdots\!69}{76\!\cdots\!87}a^{8}-\frac{17\!\cdots\!01}{76\!\cdots\!87}a^{7}-\frac{42\!\cdots\!16}{76\!\cdots\!87}a^{6}+\frac{19\!\cdots\!29}{76\!\cdots\!87}a^{5}+\frac{45\!\cdots\!16}{76\!\cdots\!87}a^{4}-\frac{12\!\cdots\!78}{76\!\cdots\!87}a^{3}-\frac{18\!\cdots\!06}{76\!\cdots\!87}a^{2}+\frac{46\!\cdots\!03}{76\!\cdots\!87}a+\frac{44\!\cdots\!39}{37\!\cdots\!21}$, $\frac{55\!\cdots\!04}{76\!\cdots\!87}a^{25}-\frac{87\!\cdots\!34}{76\!\cdots\!87}a^{24}-\frac{99\!\cdots\!43}{76\!\cdots\!87}a^{23}+\frac{84\!\cdots\!29}{76\!\cdots\!87}a^{22}+\frac{32\!\cdots\!15}{33\!\cdots\!69}a^{21}-\frac{24\!\cdots\!53}{76\!\cdots\!87}a^{20}-\frac{30\!\cdots\!74}{76\!\cdots\!87}a^{19}-\frac{15\!\cdots\!18}{76\!\cdots\!87}a^{18}+\frac{76\!\cdots\!22}{76\!\cdots\!87}a^{17}+\frac{12\!\cdots\!37}{40\!\cdots\!73}a^{16}-\frac{12\!\cdots\!90}{76\!\cdots\!87}a^{15}-\frac{54\!\cdots\!51}{76\!\cdots\!87}a^{14}+\frac{63\!\cdots\!90}{40\!\cdots\!73}a^{13}+\frac{65\!\cdots\!70}{76\!\cdots\!87}a^{12}-\frac{77\!\cdots\!16}{76\!\cdots\!87}a^{11}-\frac{42\!\cdots\!70}{76\!\cdots\!87}a^{10}+\frac{30\!\cdots\!98}{76\!\cdots\!87}a^{9}+\frac{14\!\cdots\!69}{76\!\cdots\!87}a^{8}-\frac{71\!\cdots\!18}{76\!\cdots\!87}a^{7}-\frac{21\!\cdots\!67}{76\!\cdots\!87}a^{6}+\frac{89\!\cdots\!18}{76\!\cdots\!87}a^{5}+\frac{40\!\cdots\!93}{76\!\cdots\!87}a^{4}-\frac{48\!\cdots\!06}{76\!\cdots\!87}a^{3}+\frac{56\!\cdots\!44}{40\!\cdots\!73}a^{2}+\frac{15\!\cdots\!52}{76\!\cdots\!87}a+\frac{16\!\cdots\!69}{37\!\cdots\!21}$, $\frac{35\!\cdots\!30}{76\!\cdots\!87}a^{25}+\frac{18\!\cdots\!35}{76\!\cdots\!87}a^{24}-\frac{65\!\cdots\!68}{76\!\cdots\!87}a^{23}-\frac{81\!\cdots\!56}{76\!\cdots\!87}a^{22}+\frac{21\!\cdots\!19}{33\!\cdots\!69}a^{21}+\frac{86\!\cdots\!51}{76\!\cdots\!87}a^{20}-\frac{19\!\cdots\!96}{76\!\cdots\!87}a^{19}-\frac{42\!\cdots\!70}{76\!\cdots\!87}a^{18}+\frac{47\!\cdots\!23}{76\!\cdots\!87}a^{17}+\frac{11\!\cdots\!12}{76\!\cdots\!87}a^{16}-\frac{71\!\cdots\!87}{76\!\cdots\!87}a^{15}-\frac{19\!\cdots\!82}{76\!\cdots\!87}a^{14}+\frac{65\!\cdots\!10}{76\!\cdots\!87}a^{13}+\frac{20\!\cdots\!69}{76\!\cdots\!87}a^{12}-\frac{36\!\cdots\!08}{76\!\cdots\!87}a^{11}-\frac{12\!\cdots\!96}{76\!\cdots\!87}a^{10}+\frac{11\!\cdots\!25}{76\!\cdots\!87}a^{9}+\frac{47\!\cdots\!51}{76\!\cdots\!87}a^{8}-\frac{15\!\cdots\!53}{76\!\cdots\!87}a^{7}-\frac{98\!\cdots\!35}{76\!\cdots\!87}a^{6}+\frac{84\!\cdots\!09}{76\!\cdots\!87}a^{5}+\frac{10\!\cdots\!86}{76\!\cdots\!87}a^{4}-\frac{53\!\cdots\!61}{76\!\cdots\!87}a^{3}-\frac{45\!\cdots\!69}{76\!\cdots\!87}a^{2}+\frac{68\!\cdots\!90}{76\!\cdots\!87}a+\frac{53\!\cdots\!36}{37\!\cdots\!21}$, $\frac{20\!\cdots\!81}{76\!\cdots\!87}a^{25}-\frac{28\!\cdots\!20}{76\!\cdots\!87}a^{24}-\frac{36\!\cdots\!23}{76\!\cdots\!87}a^{23}+\frac{24\!\cdots\!14}{76\!\cdots\!87}a^{22}+\frac{11\!\cdots\!64}{33\!\cdots\!69}a^{21}-\frac{42\!\cdots\!64}{76\!\cdots\!87}a^{20}-\frac{11\!\cdots\!49}{76\!\cdots\!87}a^{19}-\frac{23\!\cdots\!03}{76\!\cdots\!87}a^{18}+\frac{27\!\cdots\!71}{76\!\cdots\!87}a^{17}+\frac{12\!\cdots\!64}{76\!\cdots\!87}a^{16}-\frac{42\!\cdots\!18}{76\!\cdots\!87}a^{15}-\frac{26\!\cdots\!89}{76\!\cdots\!87}a^{14}+\frac{42\!\cdots\!52}{76\!\cdots\!87}a^{13}+\frac{30\!\cdots\!95}{76\!\cdots\!87}a^{12}-\frac{27\!\cdots\!61}{76\!\cdots\!87}a^{11}-\frac{19\!\cdots\!51}{76\!\cdots\!87}a^{10}+\frac{10\!\cdots\!69}{76\!\cdots\!87}a^{9}+\frac{68\!\cdots\!82}{76\!\cdots\!87}a^{8}-\frac{23\!\cdots\!64}{76\!\cdots\!87}a^{7}-\frac{10\!\cdots\!99}{76\!\cdots\!87}a^{6}+\frac{28\!\cdots\!47}{76\!\cdots\!87}a^{5}+\frac{54\!\cdots\!01}{76\!\cdots\!87}a^{4}-\frac{15\!\cdots\!37}{76\!\cdots\!87}a^{3}+\frac{18\!\cdots\!24}{76\!\cdots\!87}a^{2}+\frac{37\!\cdots\!51}{76\!\cdots\!87}a+\frac{29\!\cdots\!55}{37\!\cdots\!21}$, $\frac{45\!\cdots\!18}{76\!\cdots\!87}a^{25}+\frac{48\!\cdots\!02}{76\!\cdots\!87}a^{24}-\frac{24\!\cdots\!42}{22\!\cdots\!51}a^{23}-\frac{14\!\cdots\!87}{76\!\cdots\!87}a^{22}+\frac{13\!\cdots\!47}{17\!\cdots\!51}a^{21}+\frac{14\!\cdots\!64}{76\!\cdots\!87}a^{20}-\frac{23\!\cdots\!10}{76\!\cdots\!87}a^{19}-\frac{66\!\cdots\!70}{76\!\cdots\!87}a^{18}+\frac{52\!\cdots\!40}{76\!\cdots\!87}a^{17}+\frac{17\!\cdots\!19}{76\!\cdots\!87}a^{16}-\frac{69\!\cdots\!50}{76\!\cdots\!87}a^{15}-\frac{28\!\cdots\!87}{76\!\cdots\!87}a^{14}+\frac{52\!\cdots\!97}{76\!\cdots\!87}a^{13}+\frac{27\!\cdots\!36}{76\!\cdots\!87}a^{12}-\frac{17\!\cdots\!29}{76\!\cdots\!87}a^{11}-\frac{16\!\cdots\!26}{76\!\cdots\!87}a^{10}-\frac{23\!\cdots\!00}{76\!\cdots\!87}a^{9}+\frac{52\!\cdots\!23}{76\!\cdots\!87}a^{8}+\frac{32\!\cdots\!38}{76\!\cdots\!87}a^{7}-\frac{82\!\cdots\!30}{76\!\cdots\!87}a^{6}-\frac{71\!\cdots\!12}{76\!\cdots\!87}a^{5}+\frac{27\!\cdots\!99}{40\!\cdots\!73}a^{4}+\frac{48\!\cdots\!74}{76\!\cdots\!87}a^{3}-\frac{32\!\cdots\!61}{40\!\cdots\!73}a^{2}-\frac{22\!\cdots\!70}{76\!\cdots\!87}a-\frac{47\!\cdots\!64}{37\!\cdots\!21}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6269726257833716000000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{26}\cdot(2\pi)^{0}\cdot 6269726257833716000000000 \cdot 1}{2\cdot\sqrt{161976026767757064385262172731473762898927110116516889788623618048}}\cr\approx \mathstrut & 0.522724794223398 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 182*x^24 - 130*x^23 + 13676*x^22 + 16874*x^21 - 557063*x^20 - 898690*x^19 + 13585728*x^18 + 25758668*x^17 - 206672505*x^16 - 437966698*x^15 + 1975279540*x^14 + 4572542860*x^13 - 11606965747*x^12 - 29202022252*x^11 + 39753657307*x^10 + 109898528610*x^9 - 73035512264*x^8 - 227318807846*x^7 + 69544180524*x^6 + 237373608862*x^5 - 38924210832*x^4 - 100654468148*x^3 + 15446207101*x^2 + 2758719782*x + 44790407);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 13.13.542800770374370512771595361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $26$ $26$ ${\href{/padicField/7.13.0.1}{13} }^{2}$ $26$ R ${\href{/padicField/17.13.0.1}{13} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{13}$ ${\href{/padicField/23.1.0.1}{1} }^{26}$ $26$ ${\href{/padicField/31.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/41.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/47.13.0.1}{13} }^{2}$ $26$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $26$$2$$13$$39$
\(13\) Copy content Toggle raw display Deg $26$$13$$2$$48$