Normalized defining polynomial
\( x^{26} - 159 x^{24} + 10494 x^{22} - 376353 x^{20} + 8070840 x^{18} - 107513892 x^{16} + 896494311 x^{14} - 4603753098 x^{12} + 13998339648 x^{10} - 23798498787 x^{8} + 21559793733 x^{6} - 9445123746 x^{4} + 1577316888 x^{2} - 84499119 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1368525640302717774793267977670546626194406080285188816896=2^{26}\cdot 3^{13}\cdot 53^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $157.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(636=2^{2}\cdot 3\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{636}(1,·)$, $\chi_{636}(131,·)$, $\chi_{636}(577,·)$, $\chi_{636}(335,·)$, $\chi_{636}(11,·)$, $\chi_{636}(13,·)$, $\chi_{636}(493,·)$, $\chi_{636}(143,·)$, $\chi_{636}(635,·)$, $\chi_{636}(205,·)$, $\chi_{636}(515,·)$, $\chi_{636}(625,·)$, $\chi_{636}(539,·)$, $\chi_{636}(289,·)$, $\chi_{636}(587,·)$, $\chi_{636}(347,·)$, $\chi_{636}(623,·)$, $\chi_{636}(97,·)$, $\chi_{636}(169,·)$, $\chi_{636}(301,·)$, $\chi_{636}(431,·)$, $\chi_{636}(49,·)$, $\chi_{636}(467,·)$, $\chi_{636}(121,·)$, $\chi_{636}(505,·)$, $\chi_{636}(59,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{50301} a^{14} + \frac{11}{16767} a^{12} + \frac{5}{5589} a^{10} + \frac{7}{1863} a^{8} + \frac{1}{69} a^{6} + \frac{11}{207} a^{4} + \frac{3}{23} a^{2} + \frac{1}{23}$, $\frac{1}{50301} a^{15} + \frac{11}{16767} a^{13} + \frac{5}{5589} a^{11} + \frac{7}{1863} a^{9} + \frac{1}{69} a^{7} + \frac{11}{207} a^{5} + \frac{3}{23} a^{3} + \frac{1}{23} a$, $\frac{1}{150903} a^{16} - \frac{1}{16767} a^{12} - \frac{2}{5589} a^{10} + \frac{1}{1863} a^{8} + \frac{4}{621} a^{6} + \frac{1}{69} a^{4} - \frac{2}{23} a^{2} - \frac{11}{23}$, $\frac{1}{150903} a^{17} - \frac{1}{16767} a^{13} - \frac{2}{5589} a^{11} + \frac{1}{1863} a^{9} + \frac{4}{621} a^{7} + \frac{1}{69} a^{5} - \frac{2}{23} a^{3} - \frac{11}{23} a$, $\frac{1}{452709} a^{18} + \frac{1}{1863} a^{12} + \frac{2}{1863} a^{10} + \frac{11}{1863} a^{8} - \frac{11}{621} a^{6} + \frac{5}{207} a^{4} - \frac{2}{69} a^{2} + \frac{1}{23}$, $\frac{1}{452709} a^{19} + \frac{1}{1863} a^{13} + \frac{2}{1863} a^{11} + \frac{11}{1863} a^{9} - \frac{11}{621} a^{7} + \frac{5}{207} a^{5} - \frac{2}{69} a^{3} + \frac{1}{23} a$, $\frac{1}{1358127} a^{20} - \frac{1}{16767} a^{12} - \frac{11}{5589} a^{10} - \frac{5}{1863} a^{8} - \frac{7}{621} a^{6} - \frac{1}{23} a^{4} - \frac{11}{69} a^{2} - \frac{9}{23}$, $\frac{1}{1358127} a^{21} - \frac{1}{16767} a^{13} - \frac{11}{5589} a^{11} - \frac{5}{1863} a^{9} - \frac{7}{621} a^{7} - \frac{1}{23} a^{5} - \frac{11}{69} a^{3} - \frac{9}{23} a$, $\frac{1}{4074381} a^{22} + \frac{1}{23}$, $\frac{1}{4074381} a^{23} + \frac{1}{23} a$, $\frac{1}{506929491690744115880343} a^{24} + \frac{5951976017765939}{168976497230248038626781} a^{22} + \frac{3400273862401490}{56325499076749346208927} a^{20} - \frac{9619312240139629}{18775166358916448736309} a^{18} - \frac{3891034132342681}{6258388786305482912103} a^{16} - \frac{669533537983477}{231792177270573441189} a^{14} - \frac{316074545567462860}{695376531811720323567} a^{12} + \frac{348293703142197190}{231792177270573441189} a^{10} - \frac{124477184844099589}{77264059090191147063} a^{8} + \frac{139786812110216495}{25754686363397049021} a^{6} - \frac{48544943583040178}{8584895454465683007} a^{4} + \frac{228842787930625108}{2861631818155227669} a^{2} + \frac{119300292076422685}{953877272718409223}$, $\frac{1}{506929491690744115880343} a^{25} + \frac{5951976017765939}{168976497230248038626781} a^{23} + \frac{3400273862401490}{56325499076749346208927} a^{21} - \frac{9619312240139629}{18775166358916448736309} a^{19} - \frac{3891034132342681}{6258388786305482912103} a^{17} - \frac{669533537983477}{231792177270573441189} a^{15} - \frac{316074545567462860}{695376531811720323567} a^{13} + \frac{348293703142197190}{231792177270573441189} a^{11} - \frac{124477184844099589}{77264059090191147063} a^{9} + \frac{139786812110216495}{25754686363397049021} a^{7} - \frac{48544943583040178}{8584895454465683007} a^{5} + \frac{228842787930625108}{2861631818155227669} a^{3} + \frac{119300292076422685}{953877272718409223} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65471383026909620000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{159}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | R | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 53 | Data not computed | ||||||