Properties

Label 26.26.1362569623...4073.1
Degree $26$
Signature $[26, 0]$
Discriminant $3^{13}\cdot 131^{25}$
Root discriminant $188.10$
Ramified primes $3, 131$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8312527, -84268697, 86015551, 695470618, -1163844385, -1431320998, 2744646036, 1478044102, -2949081397, -929930603, 1790670843, 382039090, -672763111, -104314451, 163067279, 18764532, -25843163, -2161208, 2653408, 151479, -170783, -5975, 6463, 120, -128, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 - 128*x^24 + 120*x^23 + 6463*x^22 - 5975*x^21 - 170783*x^20 + 151479*x^19 + 2653408*x^18 - 2161208*x^17 - 25843163*x^16 + 18764532*x^15 + 163067279*x^14 - 104314451*x^13 - 672763111*x^12 + 382039090*x^11 + 1790670843*x^10 - 929930603*x^9 - 2949081397*x^8 + 1478044102*x^7 + 2744646036*x^6 - 1431320998*x^5 - 1163844385*x^4 + 695470618*x^3 + 86015551*x^2 - 84268697*x + 8312527)
 
gp: K = bnfinit(x^26 - x^25 - 128*x^24 + 120*x^23 + 6463*x^22 - 5975*x^21 - 170783*x^20 + 151479*x^19 + 2653408*x^18 - 2161208*x^17 - 25843163*x^16 + 18764532*x^15 + 163067279*x^14 - 104314451*x^13 - 672763111*x^12 + 382039090*x^11 + 1790670843*x^10 - 929930603*x^9 - 2949081397*x^8 + 1478044102*x^7 + 2744646036*x^6 - 1431320998*x^5 - 1163844385*x^4 + 695470618*x^3 + 86015551*x^2 - 84268697*x + 8312527, 1)
 

Normalized defining polynomial

\( x^{26} - x^{25} - 128 x^{24} + 120 x^{23} + 6463 x^{22} - 5975 x^{21} - 170783 x^{20} + 151479 x^{19} + 2653408 x^{18} - 2161208 x^{17} - 25843163 x^{16} + 18764532 x^{15} + 163067279 x^{14} - 104314451 x^{13} - 672763111 x^{12} + 382039090 x^{11} + 1790670843 x^{10} - 929930603 x^{9} - 2949081397 x^{8} + 1478044102 x^{7} + 2744646036 x^{6} - 1431320998 x^{5} - 1163844385 x^{4} + 695470618 x^{3} + 86015551 x^{2} - 84268697 x + 8312527 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $26$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[26, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(136256962349903875302212256879702783874125319329547338554073=3^{13}\cdot 131^{25}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $188.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 131$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(393=3\cdot 131\)
Dirichlet character group:    $\lbrace$$\chi_{393}(1,·)$, $\chi_{393}(322,·)$, $\chi_{393}(68,·)$, $\chi_{393}(325,·)$, $\chi_{393}(193,·)$, $\chi_{393}(392,·)$, $\chi_{393}(211,·)$, $\chi_{393}(149,·)$, $\chi_{393}(86,·)$, $\chi_{393}(281,·)$, $\chi_{393}(346,·)$, $\chi_{393}(155,·)$, $\chi_{393}(92,·)$, $\chi_{393}(32,·)$, $\chi_{393}(361,·)$, $\chi_{393}(71,·)$, $\chi_{393}(301,·)$, $\chi_{393}(238,·)$, $\chi_{393}(47,·)$, $\chi_{393}(112,·)$, $\chi_{393}(200,·)$, $\chi_{393}(307,·)$, $\chi_{393}(52,·)$, $\chi_{393}(182,·)$, $\chi_{393}(244,·)$, $\chi_{393}(341,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{61} a^{21} + \frac{15}{61} a^{19} + \frac{17}{61} a^{18} - \frac{29}{61} a^{17} - \frac{13}{61} a^{16} + \frac{10}{61} a^{15} - \frac{4}{61} a^{14} - \frac{23}{61} a^{13} - \frac{23}{61} a^{12} + \frac{27}{61} a^{11} - \frac{28}{61} a^{10} - \frac{7}{61} a^{9} + \frac{22}{61} a^{8} - \frac{29}{61} a^{7} + \frac{3}{61} a^{6} - \frac{15}{61} a^{5} + \frac{9}{61} a^{4} - \frac{15}{61} a^{2} - \frac{11}{61} a - \frac{29}{61}$, $\frac{1}{61} a^{22} + \frac{15}{61} a^{20} + \frac{17}{61} a^{19} - \frac{29}{61} a^{18} - \frac{13}{61} a^{17} + \frac{10}{61} a^{16} - \frac{4}{61} a^{15} - \frac{23}{61} a^{14} - \frac{23}{61} a^{13} + \frac{27}{61} a^{12} - \frac{28}{61} a^{11} - \frac{7}{61} a^{10} + \frac{22}{61} a^{9} - \frac{29}{61} a^{8} + \frac{3}{61} a^{7} - \frac{15}{61} a^{6} + \frac{9}{61} a^{5} - \frac{15}{61} a^{3} - \frac{11}{61} a^{2} - \frac{29}{61} a$, $\frac{1}{10553} a^{23} + \frac{68}{10553} a^{22} - \frac{31}{10553} a^{21} - \frac{69}{173} a^{20} - \frac{3833}{10553} a^{19} + \frac{5041}{10553} a^{18} - \frac{28}{10553} a^{17} - \frac{4094}{10553} a^{16} + \frac{465}{10553} a^{15} - \frac{19}{173} a^{14} - \frac{5237}{10553} a^{13} + \frac{5245}{10553} a^{12} - \frac{2238}{10553} a^{11} - \frac{2277}{10553} a^{10} - \frac{2542}{10553} a^{9} - \frac{5116}{10553} a^{8} + \frac{3841}{10553} a^{7} + \frac{498}{10553} a^{6} - \frac{2358}{10553} a^{5} + \frac{1767}{10553} a^{4} + \frac{1043}{10553} a^{3} + \frac{767}{10553} a^{2} - \frac{3418}{10553} a + \frac{1456}{10553}$, $\frac{1}{80541139733} a^{24} - \frac{2382431}{80541139733} a^{23} - \frac{25949096}{80541139733} a^{22} - \frac{527198564}{80541139733} a^{21} + \frac{5761424893}{80541139733} a^{20} - \frac{28659672489}{80541139733} a^{19} + \frac{22100990945}{80541139733} a^{18} + \frac{26673809702}{80541139733} a^{17} + \frac{20963337591}{80541139733} a^{16} - \frac{7609437782}{80541139733} a^{15} + \frac{24845826438}{80541139733} a^{14} + \frac{33226726836}{80541139733} a^{13} - \frac{14506481084}{80541139733} a^{12} - \frac{17100918094}{80541139733} a^{11} + \frac{30273953883}{80541139733} a^{10} - \frac{25568596434}{80541139733} a^{9} + \frac{8731972345}{80541139733} a^{8} + \frac{17799463527}{80541139733} a^{7} - \frac{28410557989}{80541139733} a^{6} + \frac{14998918229}{80541139733} a^{5} + \frac{27525562073}{80541139733} a^{4} + \frac{13988693860}{80541139733} a^{3} + \frac{39173652892}{80541139733} a^{2} + \frac{29856413742}{80541139733} a - \frac{524462178}{1320346553}$, $\frac{1}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{25} + \frac{856494438109526421580125317902189822291065281143160461968760456144931785}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{24} - \frac{20785382926254822038145258879531406010651708057540285717427591476719371965939}{11223582122227910877749558144281679347611271415276154178454063874688031056804680581} a^{23} + \frac{1854136638479782768339564215936168941813663355198740015348116853099903368084728855}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{22} + \frac{682850611776967392428030103288429938329959811272120797182418493809810473681419696}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{21} + \frac{76606092606790183025502210403288431608330285286663140651073098977677077771659009472}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{20} - \frac{169410689774255920268221250831260853887813703622759384857745379554694250477347130146}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{19} + \frac{6377735506066527862634163176138597349624433126714609620336973121268792121992667650}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{18} + \frac{124934467098712534970091744632771724007419283585292936057996561244148638012704332366}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{17} - \frac{125804246234787833566862046400615288398684132112190871659261971595530250286853385549}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{16} + \frac{299602765672203308787030926227676808233401282401778877194235734366229261179808413203}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{15} + \frac{91666187932154635694783699068488125591397342700856081043678767902356862217323730921}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{14} - \frac{284048471476817245969414111795895288794844653390325332383334205240786570254662274938}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{13} + \frac{324937955159411477521264426451745505810040017878971146301907760105975583751101061045}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{12} - \frac{200873230144628954832670476382774514956981782052273490377062478873776240662913523436}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{11} + \frac{291368090591343183319240353018701769759293675614326253166017943723910156907315016885}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{10} - \frac{57806743199846483421612169418719386346200134448562504372732523577293645298247446739}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{9} + \frac{205847304805817721899136653245381188850931159631009278626561781897791243131722216503}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{8} - \frac{37349347934417249846467838506041330292102263679546444747834349648991827437817670248}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{7} + \frac{125129956339438661628498019265160816946863549957232508884802406758177731557200034147}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{6} + \frac{198253901459437876587666688503516351481901900538374507208978501299057664470309615801}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{5} - \frac{341446090135172263207764561982322957756772345935648520581580828673242146275618983326}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{4} - \frac{226692257857078512421818832202949368811746710658755778151014034682062038288132317687}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{3} + \frac{30793245755534165642782754496516589996516428543283111594962913195675143185168961538}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a^{2} - \frac{84501282926712157187540598394126446756511981063614329271896098254498215252521369770}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441} a + \frac{48192098072927432329518527617936583476074044197104263531192532504682998754492254049}{684638509455902563542723046801182440204287556331845404885697896355969894465085515441}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $25$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1768130091528311500000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{26}$ (as 26T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{393}) \), 13.13.25542038069936263923006961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ R $26$ ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/23.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ $26$ $26$ $26$ ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
131Data not computed