Normalized defining polynomial
\( x^{26} - 2 x^{25} - 73 x^{24} + 134 x^{23} + 2166 x^{22} - 3640 x^{21} - 34469 x^{20} + 52714 x^{19} + 327544 x^{18} - 453164 x^{17} - 1957340 x^{16} + 2432394 x^{15} + 7531107 x^{14} - 8328084 x^{13} - 18730676 x^{12} + 18209442 x^{11} + 29677420 x^{10} - 24941144 x^{9} - 28852591 x^{8} + 20368692 x^{7} + 16012693 x^{6} - 8893984 x^{5} - 4454532 x^{4} + 1587526 x^{3} + 501952 x^{2} - 42320 x - 12167 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(132675490325051365459874809737094631268103216670179328=2^{39}\cdot 53^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $110.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(424=2^{3}\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{424}(1,·)$, $\chi_{424}(261,·)$, $\chi_{424}(225,·)$, $\chi_{424}(201,·)$, $\chi_{424}(417,·)$, $\chi_{424}(13,·)$, $\chi_{424}(77,·)$, $\chi_{424}(333,·)$, $\chi_{424}(81,·)$, $\chi_{424}(205,·)$, $\chi_{424}(213,·)$, $\chi_{424}(281,·)$, $\chi_{424}(153,·)$, $\chi_{424}(413,·)$, $\chi_{424}(69,·)$, $\chi_{424}(289,·)$, $\chi_{424}(293,·)$, $\chi_{424}(97,·)$, $\chi_{424}(169,·)$, $\chi_{424}(301,·)$, $\chi_{424}(49,·)$, $\chi_{424}(365,·)$, $\chi_{424}(309,·)$, $\chi_{424}(89,·)$, $\chi_{424}(121,·)$, $\chi_{424}(381,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} - \frac{3}{23} a^{17} + \frac{11}{23} a^{16} - \frac{5}{23} a^{15} + \frac{8}{23} a^{14} - \frac{7}{23} a^{13} - \frac{4}{23} a^{12} - \frac{8}{23} a^{11} - \frac{10}{23} a^{10} - \frac{1}{23} a^{9} - \frac{7}{23} a^{8} - \frac{2}{23} a^{7} - \frac{1}{23} a^{6} + \frac{2}{23} a^{5} + \frac{1}{23} a^{4} + \frac{4}{23} a^{3} + \frac{11}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{23} a^{19} + \frac{2}{23} a^{17} + \frac{5}{23} a^{16} - \frac{7}{23} a^{15} - \frac{6}{23} a^{14} - \frac{2}{23} a^{13} + \frac{3}{23} a^{12} - \frac{11}{23} a^{11} - \frac{8}{23} a^{10} - \frac{10}{23} a^{9} - \frac{7}{23} a^{7} - \frac{1}{23} a^{6} + \frac{7}{23} a^{5} + \frac{7}{23} a^{4} - \frac{6}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{23} a^{20} + \frac{11}{23} a^{17} - \frac{6}{23} a^{16} + \frac{4}{23} a^{15} + \frac{5}{23} a^{14} - \frac{6}{23} a^{13} - \frac{3}{23} a^{12} + \frac{8}{23} a^{11} + \frac{10}{23} a^{10} + \frac{2}{23} a^{9} + \frac{7}{23} a^{8} + \frac{3}{23} a^{7} + \frac{9}{23} a^{6} + \frac{3}{23} a^{5} - \frac{2}{23} a^{4} + \frac{9}{23} a^{3} - \frac{1}{23} a^{2} + \frac{9}{23} a$, $\frac{1}{23} a^{21} + \frac{4}{23} a^{17} - \frac{2}{23} a^{16} - \frac{9}{23} a^{15} - \frac{2}{23} a^{14} + \frac{5}{23} a^{13} + \frac{6}{23} a^{12} + \frac{6}{23} a^{11} - \frac{3}{23} a^{10} - \frac{5}{23} a^{9} + \frac{11}{23} a^{8} + \frac{8}{23} a^{7} - \frac{9}{23} a^{6} - \frac{1}{23} a^{5} - \frac{2}{23} a^{4} + \frac{1}{23} a^{3} + \frac{3}{23} a^{2} - \frac{8}{23} a$, $\frac{1}{23} a^{22} + \frac{10}{23} a^{17} - \frac{7}{23} a^{16} - \frac{5}{23} a^{15} - \frac{4}{23} a^{14} + \frac{11}{23} a^{13} - \frac{1}{23} a^{12} + \frac{6}{23} a^{11} - \frac{11}{23} a^{10} - \frac{8}{23} a^{9} - \frac{10}{23} a^{8} - \frac{1}{23} a^{7} + \frac{3}{23} a^{6} - \frac{10}{23} a^{5} - \frac{3}{23} a^{4} + \frac{10}{23} a^{3} - \frac{6}{23} a^{2} - \frac{5}{23} a$, $\frac{1}{23} a^{23} - \frac{1}{23} a$, $\frac{1}{10007415161} a^{24} + \frac{176153190}{10007415161} a^{23} + \frac{167546221}{10007415161} a^{22} + \frac{125519760}{10007415161} a^{21} - \frac{105610713}{10007415161} a^{20} - \frac{212508789}{10007415161} a^{19} + \frac{15085601}{10007415161} a^{18} + \frac{788797394}{10007415161} a^{17} - \frac{4713665845}{10007415161} a^{16} + \frac{1814832448}{10007415161} a^{15} + \frac{2674096457}{10007415161} a^{14} - \frac{4555053797}{10007415161} a^{13} - \frac{4785869927}{10007415161} a^{12} - \frac{2232725445}{10007415161} a^{11} - \frac{3769709055}{10007415161} a^{10} + \frac{2512728723}{10007415161} a^{9} - \frac{3279458065}{10007415161} a^{8} + \frac{403753381}{10007415161} a^{7} + \frac{2707440832}{10007415161} a^{6} + \frac{2458506826}{10007415161} a^{5} + \frac{3939347686}{10007415161} a^{4} - \frac{2761605158}{10007415161} a^{3} - \frac{94462382}{10007415161} a^{2} + \frac{38434236}{435105007} a + \frac{3146874}{18917609}$, $\frac{1}{93554463095389318627211512018619778264634539822866471839} a^{25} + \frac{1840571246284937735886448388899337834706146536}{93554463095389318627211512018619778264634539822866471839} a^{24} - \frac{630921778774404753810104660171778837956190189707386259}{93554463095389318627211512018619778264634539822866471839} a^{23} + \frac{479690138734312100134196294741588124778376379040042981}{93554463095389318627211512018619778264634539822866471839} a^{22} + \frac{1197060436016804018235612034440817295201074630882064514}{93554463095389318627211512018619778264634539822866471839} a^{21} - \frac{1896311183482953895967811351306771131978867989598900916}{93554463095389318627211512018619778264634539822866471839} a^{20} + \frac{50134406488300807071862835811081420445114904609278591}{4067585351973448635965717913853033837592806079255063993} a^{19} + \frac{750266210075804271097210319430582381222057385045526451}{93554463095389318627211512018619778264634539822866471839} a^{18} + \frac{5711009241933257357071046963051411277258296123328731234}{93554463095389318627211512018619778264634539822866471839} a^{17} + \frac{7671487442847444216393822481386915095134921279245597356}{93554463095389318627211512018619778264634539822866471839} a^{16} - \frac{12428466930730400640424587417644659446184739437064550472}{93554463095389318627211512018619778264634539822866471839} a^{15} + \frac{8879985190047834394176868835176079893957189366509398920}{93554463095389318627211512018619778264634539822866471839} a^{14} + \frac{25153089977636867375801238664735529290452069050771709602}{93554463095389318627211512018619778264634539822866471839} a^{13} + \frac{21002716000143312305751123917592437477216633708853072301}{93554463095389318627211512018619778264634539822866471839} a^{12} - \frac{27475057361937321010891243485394242677340439801325649188}{93554463095389318627211512018619778264634539822866471839} a^{11} - \frac{24262415472784879505350144687315415611377697718653301902}{93554463095389318627211512018619778264634539822866471839} a^{10} - \frac{38513967944266528906994877578017687527891192999692902975}{93554463095389318627211512018619778264634539822866471839} a^{9} - \frac{2281564621664862002581118024139405653653498445833102803}{93554463095389318627211512018619778264634539822866471839} a^{8} + \frac{33191619743790646125492408910906633887459133805740109023}{93554463095389318627211512018619778264634539822866471839} a^{7} + \frac{30451601070830642938516626065031904419502865816075590051}{93554463095389318627211512018619778264634539822866471839} a^{6} - \frac{5623846020450984184129212761092728435129421177721466544}{93554463095389318627211512018619778264634539822866471839} a^{5} - \frac{29627850797894863460457645772946797461901705701511123377}{93554463095389318627211512018619778264634539822866471839} a^{4} - \frac{12033180664003220717964377691997461020725865992772763745}{93554463095389318627211512018619778264634539822866471839} a^{3} + \frac{13019329849000949854859119677942535138096939829312285658}{93554463095389318627211512018619778264634539822866471839} a^{2} - \frac{1679830851565274801710194616192642217718047522463048059}{4067585351973448635965717913853033837592806079255063993} a + \frac{43773582418237291961790744689340944586221305285844346}{176851537042323853737639909297957992938817655619785391}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3196294146983080400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $26$ | $26$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | R | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 53 | Data not computed | ||||||