Normalized defining polynomial
\( x^{26} - x^{25} - 25 x^{24} + 24 x^{23} + 276 x^{22} - 253 x^{21} - 1771 x^{20} + 1540 x^{19} + 7315 x^{18} - 5985 x^{17} - 20349 x^{16} + 15504 x^{15} + 38760 x^{14} - 27132 x^{13} - 50388 x^{12} + 31824 x^{11} + 43758 x^{10} - 24310 x^{9} - 24310 x^{8} + 11440 x^{7} + 8008 x^{6} - 3003 x^{5} - 1365 x^{4} + 364 x^{3} + 91 x^{2} - 13 x - 1 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[26, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(12790771483610519443342791266451996229460693\)\(\medspace = 53^{25}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $45.49$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $53$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $26$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(53\) | ||
Dirichlet character group: | $\lbrace$$\chi_{53}(1,·)$, $\chi_{53}(4,·)$, $\chi_{53}(6,·)$, $\chi_{53}(7,·)$, $\chi_{53}(9,·)$, $\chi_{53}(10,·)$, $\chi_{53}(11,·)$, $\chi_{53}(13,·)$, $\chi_{53}(15,·)$, $\chi_{53}(16,·)$, $\chi_{53}(17,·)$, $\chi_{53}(24,·)$, $\chi_{53}(25,·)$, $\chi_{53}(28,·)$, $\chi_{53}(29,·)$, $\chi_{53}(36,·)$, $\chi_{53}(37,·)$, $\chi_{53}(38,·)$, $\chi_{53}(40,·)$, $\chi_{53}(42,·)$, $\chi_{53}(43,·)$, $\chi_{53}(44,·)$, $\chi_{53}(46,·)$, $\chi_{53}(47,·)$, $\chi_{53}(49,·)$, $\chi_{53}(52,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $25$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 14915851505236.459 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 26 |
The 26 conjugacy class representatives for $C_{26}$ |
Character table for $C_{26}$ is not computed |
Intermediate fields
\(\Q(\sqrt{53}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | R | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
53 | Data not computed |