Normalized defining polynomial
\( x^{26} - x^{25} - 237 x^{24} + 236 x^{23} + 23596 x^{22} - 23361 x^{21} - 1295607 x^{20} + 1272480 x^{19} + 43336299 x^{18} - 41744121 x^{17} - 922097601 x^{16} + 847617156 x^{15} + 12679275824 x^{14} - 10620996476 x^{13} - 112332798212 x^{12} + 80106834336 x^{11} + 626544673310 x^{10} - 342523579686 x^{9} - 2083673460942 x^{8} + 713094712440 x^{7} + 3678187011560 x^{6} - 367759090103 x^{5} - 2570589441833 x^{4} - 491134065712 x^{3} + 124126156759 x^{2} - 1531488649 x - 253846469 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[26, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(126687194260488432068189542176205538728418933203425107834341=17^{13}\cdot 53^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $187.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(901=17\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{901}(256,·)$, $\chi_{901}(1,·)$, $\chi_{901}(322,·)$, $\chi_{901}(579,·)$, $\chi_{901}(900,·)$, $\chi_{901}(645,·)$, $\chi_{901}(135,·)$, $\chi_{901}(460,·)$, $\chi_{901}(205,·)$, $\chi_{901}(271,·)$, $\chi_{901}(594,·)$, $\chi_{901}(596,·)$, $\chi_{901}(664,·)$, $\chi_{901}(222,·)$, $\chi_{901}(69,·)$, $\chi_{901}(832,·)$, $\chi_{901}(545,·)$, $\chi_{901}(356,·)$, $\chi_{901}(679,·)$, $\chi_{901}(237,·)$, $\chi_{901}(305,·)$, $\chi_{901}(307,·)$, $\chi_{901}(630,·)$, $\chi_{901}(696,·)$, $\chi_{901}(441,·)$, $\chi_{901}(766,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{1}{23} a^{16} + \frac{9}{23} a^{15} - \frac{4}{23} a^{14} - \frac{7}{23} a^{13} + \frac{3}{23} a^{12} + \frac{2}{23} a^{11} + \frac{11}{23} a^{10} + \frac{3}{23} a^{9} + \frac{5}{23} a^{8} - \frac{6}{23} a^{7} - \frac{4}{23} a^{6} + \frac{2}{23} a^{5} + \frac{3}{23} a^{4} + \frac{9}{23} a^{3} + \frac{7}{23} a^{2} + \frac{11}{23} a$, $\frac{1}{23} a^{19} + \frac{1}{23} a^{17} + \frac{9}{23} a^{16} - \frac{4}{23} a^{15} - \frac{7}{23} a^{14} + \frac{3}{23} a^{13} + \frac{2}{23} a^{12} + \frac{11}{23} a^{11} + \frac{3}{23} a^{10} + \frac{5}{23} a^{9} - \frac{6}{23} a^{8} - \frac{4}{23} a^{7} + \frac{2}{23} a^{6} + \frac{3}{23} a^{5} + \frac{9}{23} a^{4} + \frac{7}{23} a^{3} + \frac{11}{23} a^{2}$, $\frac{1}{23} a^{20} + \frac{9}{23} a^{17} - \frac{5}{23} a^{16} + \frac{7}{23} a^{15} + \frac{7}{23} a^{14} + \frac{9}{23} a^{13} + \frac{8}{23} a^{12} + \frac{1}{23} a^{11} - \frac{6}{23} a^{10} - \frac{9}{23} a^{9} - \frac{9}{23} a^{8} + \frac{8}{23} a^{7} + \frac{7}{23} a^{6} + \frac{7}{23} a^{5} + \frac{4}{23} a^{4} + \frac{2}{23} a^{3} - \frac{7}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{23} a^{21} - \frac{5}{23} a^{17} - \frac{2}{23} a^{16} - \frac{5}{23} a^{15} - \frac{1}{23} a^{14} + \frac{2}{23} a^{13} - \frac{3}{23} a^{12} - \frac{1}{23} a^{11} + \frac{7}{23} a^{10} + \frac{10}{23} a^{9} + \frac{9}{23} a^{8} - \frac{8}{23} a^{7} - \frac{3}{23} a^{6} + \frac{9}{23} a^{5} - \frac{2}{23} a^{4} + \frac{4}{23} a^{3} - \frac{5}{23} a^{2} - \frac{7}{23} a$, $\frac{1}{23} a^{22} - \frac{2}{23} a^{17} - \frac{2}{23} a^{15} + \frac{5}{23} a^{14} + \frac{8}{23} a^{13} - \frac{9}{23} a^{12} - \frac{6}{23} a^{11} - \frac{4}{23} a^{10} + \frac{1}{23} a^{9} - \frac{6}{23} a^{8} - \frac{10}{23} a^{7} - \frac{11}{23} a^{6} + \frac{8}{23} a^{5} - \frac{4}{23} a^{4} - \frac{6}{23} a^{3} + \frac{5}{23} a^{2} + \frac{9}{23} a$, $\frac{1}{23} a^{23} - \frac{1}{23} a$, $\frac{1}{529} a^{24} + \frac{10}{529} a^{23} - \frac{1}{529} a^{22} - \frac{10}{529} a^{21} - \frac{8}{529} a^{20} - \frac{7}{529} a^{19} + \frac{2}{529} a^{18} - \frac{27}{529} a^{17} + \frac{91}{529} a^{16} + \frac{19}{529} a^{15} + \frac{105}{529} a^{14} + \frac{118}{529} a^{13} + \frac{243}{529} a^{12} - \frac{88}{529} a^{11} - \frac{109}{529} a^{10} - \frac{173}{529} a^{9} - \frac{236}{529} a^{8} + \frac{226}{529} a^{7} - \frac{14}{529} a^{6} - \frac{56}{529} a^{5} - \frac{226}{529} a^{4} + \frac{126}{529} a^{3} + \frac{129}{529} a^{2} - \frac{7}{23} a$, $\frac{1}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{25} - \frac{141943313171704362044567191163772455486865926617203937139788527960214515408276315940504300532053973793551137760861866522609627015920012374}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{24} + \frac{2349019231938243733548091271992354927756736401533053879235671756838537071452216420912199979718808497981110518109663951439556621184818704788}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{23} + \frac{17096256599890313797743906142096135214354660678774892592382240776841219410353791418160259318297056975529592381269696450920578565297672423985}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{22} - \frac{18612211610682650763803286259766277074236873492543868962799019817607574596659117745315580260873222315851569466750149444334810486661631475040}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{21} + \frac{32281612881377433025680011540492966940486822137663755317259733450573119924926874702489845705281620872863279191611218333216607709900203855921}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{20} - \frac{23970212762627502180938805018057227024346210897427958165070825295159465106466705880338905225998814325410107538760278850453489102919663882994}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{19} - \frac{29237227612367385485634142130750339441943137154147962713206727087688059825181500076208347385989880728808847576920335583699763176451680939453}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{18} - \frac{697531301403841629423518407184679375583615053746310466490468365599109990442224044872625012833739081817648754060638880315512402335151085816738}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{17} - \frac{237046686325823823496253520971717351689078171575752939636320849655652599048794957436167257983774991202507988587103948593353013065827854495648}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{16} - \frac{473142832364761088564642284166158053720349672397188881538867387242842181114556690641654625433004654291909486541990230385537086511550678989382}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{15} + \frac{507953124438844163277128628864255206253178991174969451534125878352739128839701365770169385894619831977517815598772170545544498692192693355232}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{14} + \frac{568367313278338355439236847793903766369522176896511238175166692398798863823499321257077482342802592040616536998009919537641074684999465846380}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{13} - \frac{487075864627487335361477786380820192723426287662355298640990645963960346835740537942621731871733139018373334915708892541619671137501873740}{88898273585285780423363241280049880426199240816788442512452567194651057305283136440834595527459131346195628552417523855941477467179937780699} a^{12} - \frac{532790198680271161836710057476856474145320510169886516022020878846260510348297566126203904697022178246701279167201725118234928354733157032668}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{11} + \frac{50491332583163691212517460230613805522008851148294059369350165777819063689213038311681710061647113032851364969763116746177531947079454512324}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{10} + \frac{896931893936080077739812514798839838397856488857083558976765056792512364691257869167288103287146885112245150554557977735462068124967205593486}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{9} - \frac{780685398910414624193808465013961426044766501350696039681656166202001698929713617105721211577237219617172201235129833276487510439665314979008}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{8} + \frac{192566064804534927459240064237134183785963963838733638398545367356436836051588532711240393350927781497675939835778432213043010607257375996493}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{7} + \frac{229875927523085216682527146161076245144465599676376057517304728705616054674361326610497190426985188926901092938652707054303838060850457914050}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{6} + \frac{286045138374340825851391856898749307001520665229072508960425317819661578008867559116462367638833751110570503790873099522985116656804167432}{88898273585285780423363241280049880426199240816788442512452567194651057305283136440834595527459131346195628552417523855941477467179937780699} a^{5} - \frac{841166961883893263471994448278909699037303454553453932074254371547130020103166582811473540232909285018948569707981332323540521994938253854318}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{4} + \frac{8815013701033335315351235078537728645698318676285655708309803420348941119981356716305224193371331477629537680669652567290640995500466153976}{88898273585285780423363241280049880426199240816788442512452567194651057305283136440834595527459131346195628552417523855941477467179937780699} a^{3} + \frac{56464293049797376967089021529362625715396262708638548507902113066457168779280404878786362766330008132979071264905360003563522489023885381748}{2044660292461572949737354549441147249802582538786134177786409045476974318021512138139195697131560020962499456705603048686653981745138568956077} a^{2} + \frac{33272664814592290050401719028994237967273293548912135640249616269757515168998162218543905538984707460524957752298913776171121138549101282608}{88898273585285780423363241280049880426199240816788442512452567194651057305283136440834595527459131346195628552417523855941477467179937780699} a + \frac{857125878962681588780589910911398450213648013362341120568056790209726002109724241288520279334832894707213977986773823899712859698464774454}{3865142329795033931450575707828255670704314818121236630976198573680480752403614627862373718585179623747636024018153211127890324659997294813}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $25$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 788899536890369100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{901}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | R | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | R | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 53 | Data not computed | ||||||