Normalized defining polynomial
\( x^{26} - 4 x^{25} - x^{24} + 12 x^{23} - 20 x^{22} - 91 x^{21} + 245 x^{20} + 945 x^{19} + 237 x^{18} - 2538 x^{17} - 3465 x^{16} + 4625 x^{15} + 16764 x^{14} + 17173 x^{13} + 6911 x^{12} - 948 x^{11} + 1857 x^{10} + 6384 x^{9} + 2100 x^{8} - 1050 x^{7} + 280 x^{6} + 490 x^{5} - 352 x^{4} - 172 x^{3} - 11 x^{2} + 8 x - 1 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(955936936346220716198217427028321533203125\)\(\medspace = 5^{13}\cdot 19^{12}\cdot 29^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $41.17$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 19, 29$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{19} a^{12} + \frac{8}{19} a^{11} - \frac{6}{19} a^{10} - \frac{8}{19} a^{9} + \frac{3}{19} a^{8} - \frac{3}{19} a^{7} - \frac{4}{19} a^{6} - \frac{8}{19} a^{5} + \frac{5}{19} a^{4} + \frac{1}{19} a^{3} + \frac{4}{19} a^{2} - \frac{5}{19} a + \frac{3}{19}$, $\frac{1}{19} a^{13} + \frac{6}{19} a^{11} + \frac{2}{19} a^{10} - \frac{9}{19} a^{9} - \frac{8}{19} a^{8} + \frac{1}{19} a^{7} + \frac{5}{19} a^{6} - \frac{7}{19} a^{5} - \frac{1}{19} a^{4} - \frac{4}{19} a^{3} + \frac{1}{19} a^{2} + \frac{5}{19} a - \frac{5}{19}$, $\frac{1}{19} a^{14} - \frac{8}{19} a^{11} + \frac{8}{19} a^{10} + \frac{2}{19} a^{9} + \frac{2}{19} a^{8} + \frac{4}{19} a^{7} - \frac{2}{19} a^{6} + \frac{9}{19} a^{5} + \frac{4}{19} a^{4} - \frac{5}{19} a^{3} + \frac{6}{19} a + \frac{1}{19}$, $\frac{1}{19} a^{15} - \frac{4}{19} a^{11} - \frac{8}{19} a^{10} - \frac{5}{19} a^{9} + \frac{9}{19} a^{8} - \frac{7}{19} a^{7} - \frac{4}{19} a^{6} - \frac{3}{19} a^{5} - \frac{3}{19} a^{4} + \frac{8}{19} a^{3} - \frac{1}{19} a + \frac{5}{19}$, $\frac{1}{19} a^{16} + \frac{5}{19} a^{11} + \frac{9}{19} a^{10} - \frac{4}{19} a^{9} + \frac{5}{19} a^{8} + \frac{3}{19} a^{7} + \frac{3}{19} a^{5} + \frac{9}{19} a^{4} + \frac{4}{19} a^{3} - \frac{4}{19} a^{2} + \frac{4}{19} a - \frac{7}{19}$, $\frac{1}{19} a^{17} + \frac{7}{19} a^{11} + \frac{7}{19} a^{10} + \frac{7}{19} a^{9} + \frac{7}{19} a^{8} - \frac{4}{19} a^{7} + \frac{4}{19} a^{6} - \frac{8}{19} a^{5} - \frac{2}{19} a^{4} - \frac{9}{19} a^{3} + \frac{3}{19} a^{2} - \frac{1}{19} a + \frac{4}{19}$, $\frac{1}{19} a^{18} + \frac{8}{19} a^{11} - \frac{8}{19} a^{10} + \frac{6}{19} a^{9} - \frac{6}{19} a^{8} + \frac{6}{19} a^{7} + \frac{1}{19} a^{6} - \frac{3}{19} a^{5} - \frac{6}{19} a^{4} - \frac{4}{19} a^{3} + \frac{9}{19} a^{2} + \frac{1}{19} a - \frac{2}{19}$, $\frac{1}{19} a^{19} + \frac{4}{19} a^{11} - \frac{3}{19} a^{10} + \frac{1}{19} a^{9} + \frac{1}{19} a^{8} + \frac{6}{19} a^{7} - \frac{9}{19} a^{6} + \frac{1}{19} a^{5} - \frac{6}{19} a^{4} + \frac{1}{19} a^{3} + \frac{7}{19} a^{2} - \frac{5}{19}$, $\frac{1}{19} a^{20} + \frac{3}{19} a^{11} + \frac{6}{19} a^{10} - \frac{5}{19} a^{9} - \frac{6}{19} a^{8} + \frac{3}{19} a^{7} - \frac{2}{19} a^{6} + \frac{7}{19} a^{5} + \frac{3}{19} a^{3} + \frac{3}{19} a^{2} - \frac{4}{19} a + \frac{7}{19}$, $\frac{1}{19} a^{21} + \frac{1}{19} a^{11} - \frac{6}{19} a^{10} - \frac{1}{19} a^{9} - \frac{6}{19} a^{8} + \frac{7}{19} a^{7} + \frac{5}{19} a^{5} + \frac{7}{19} a^{4} + \frac{3}{19} a^{2} + \frac{3}{19} a - \frac{9}{19}$, $\frac{1}{361} a^{22} - \frac{6}{361} a^{21} + \frac{6}{361} a^{20} + \frac{7}{361} a^{19} + \frac{3}{361} a^{18} + \frac{4}{361} a^{17} - \frac{4}{361} a^{16} + \frac{6}{361} a^{15} - \frac{3}{361} a^{14} + \frac{1}{361} a^{13} + \frac{83}{361} a^{11} + \frac{11}{361} a^{10} + \frac{78}{361} a^{9} + \frac{117}{361} a^{8} - \frac{175}{361} a^{7} + \frac{35}{361} a^{6} + \frac{119}{361} a^{5} + \frac{65}{361} a^{4} + \frac{98}{361} a^{3} - \frac{48}{361} a^{2} + \frac{89}{361} a + \frac{175}{361}$, $\frac{1}{361} a^{23} + \frac{8}{361} a^{21} + \frac{5}{361} a^{20} + \frac{7}{361} a^{19} + \frac{3}{361} a^{18} + \frac{1}{361} a^{17} + \frac{1}{361} a^{16} - \frac{5}{361} a^{15} + \frac{2}{361} a^{14} + \frac{6}{361} a^{13} + \frac{7}{361} a^{12} - \frac{156}{361} a^{11} - \frac{179}{361} a^{10} + \frac{129}{361} a^{9} + \frac{33}{361} a^{8} - \frac{141}{361} a^{7} - \frac{13}{361} a^{6} + \frac{1}{19} a^{5} + \frac{32}{361} a^{4} - \frac{125}{361} a^{3} + \frac{10}{361} a^{2} + \frac{139}{361} a + \frac{62}{361}$, $\frac{1}{10469} a^{24} + \frac{5}{10469} a^{23} + \frac{2}{10469} a^{22} + \frac{81}{10469} a^{21} - \frac{42}{10469} a^{20} + \frac{15}{10469} a^{19} - \frac{2}{10469} a^{18} + \frac{210}{10469} a^{17} - \frac{109}{10469} a^{16} + \frac{131}{10469} a^{15} + \frac{262}{10469} a^{14} + \frac{31}{10469} a^{13} - \frac{254}{10469} a^{12} - \frac{2046}{10469} a^{11} - \frac{2865}{10469} a^{10} + \frac{590}{10469} a^{9} - \frac{3148}{10469} a^{8} - \frac{1720}{10469} a^{7} + \frac{3126}{10469} a^{6} + \frac{2377}{10469} a^{5} - \frac{1362}{10469} a^{4} - \frac{3635}{10469} a^{3} - \frac{3152}{10469} a^{2} - \frac{2513}{10469} a + \frac{3326}{10469}$, $\frac{1}{46918419213254345422166367919} a^{25} + \frac{1527042082391566083026585}{46918419213254345422166367919} a^{24} - \frac{53951787880502506107663727}{46918419213254345422166367919} a^{23} + \frac{148161123126790968504673}{998264238579879689833326977} a^{22} - \frac{291381970624366155526344756}{46918419213254345422166367919} a^{21} + \frac{1127073959911118586065344312}{46918419213254345422166367919} a^{20} - \frac{842590638542166067556200086}{46918419213254345422166367919} a^{19} - \frac{1032419895275949202209170799}{46918419213254345422166367919} a^{18} + \frac{190539840533213623705008591}{46918419213254345422166367919} a^{17} + \frac{461915262856974295240903714}{46918419213254345422166367919} a^{16} - \frac{897551086096097836781372705}{46918419213254345422166367919} a^{15} - \frac{162565543595442424721496478}{46918419213254345422166367919} a^{14} + \frac{41290670128908540524480749}{2759907012544373260127433407} a^{13} + \frac{1111613048963195534719501388}{46918419213254345422166367919} a^{12} - \frac{11969770065629851630799249635}{46918419213254345422166367919} a^{11} + \frac{359227320574783710509762066}{3609109170250334263243566763} a^{10} - \frac{4449545675296070812974027896}{46918419213254345422166367919} a^{9} - \frac{7045097134959957303631693348}{46918419213254345422166367919} a^{8} + \frac{517136809618361944690324034}{1617876524594977428350564411} a^{7} + \frac{10827172117050790505976744528}{46918419213254345422166367919} a^{6} + \frac{13445269739731626048377339395}{46918419213254345422166367919} a^{5} + \frac{1036788429123464148906714799}{3609109170250334263243566763} a^{4} - \frac{13821514445497216003902292470}{46918419213254345422166367919} a^{3} + \frac{9810428790835055330665922205}{46918419213254345422166367919} a^{2} + \frac{10981164631383031143555429489}{46918419213254345422166367919} a + \frac{7632933710464288095085546554}{46918419213254345422166367919}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 74302156406.7933 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 13.1.27983987175790801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $26$ | $26$ | R | $26$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{13}$ | R | $26$ | R | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
5 | Data not computed | ||||||
$19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.2755.2t1.a.a | $1$ | $ 5 \cdot 19 \cdot 29 $ | \(\Q(\sqrt{-2755}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.551.2t1.a.a | $1$ | $ 19 \cdot 29 $ | \(\Q(\sqrt{-551}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.13775.26t3.b.d | $2$ | $ 5^{2} \cdot 19 \cdot 29 $ | 26.2.955936936346220716198217427028321533203125.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.551.13t2.a.e | $2$ | $ 19 \cdot 29 $ | 13.1.27983987175790801.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.551.13t2.a.c | $2$ | $ 19 \cdot 29 $ | 13.1.27983987175790801.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.13775.26t3.b.b | $2$ | $ 5^{2} \cdot 19 \cdot 29 $ | 26.2.955936936346220716198217427028321533203125.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.551.13t2.a.d | $2$ | $ 19 \cdot 29 $ | 13.1.27983987175790801.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.13775.26t3.b.a | $2$ | $ 5^{2} \cdot 19 \cdot 29 $ | 26.2.955936936346220716198217427028321533203125.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.551.13t2.a.a | $2$ | $ 19 \cdot 29 $ | 13.1.27983987175790801.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.551.13t2.a.b | $2$ | $ 19 \cdot 29 $ | 13.1.27983987175790801.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.551.13t2.a.f | $2$ | $ 19 \cdot 29 $ | 13.1.27983987175790801.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.13775.26t3.b.e | $2$ | $ 5^{2} \cdot 19 \cdot 29 $ | 26.2.955936936346220716198217427028321533203125.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.13775.26t3.b.c | $2$ | $ 5^{2} \cdot 19 \cdot 29 $ | 26.2.955936936346220716198217427028321533203125.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.13775.26t3.b.f | $2$ | $ 5^{2} \cdot 19 \cdot 29 $ | 26.2.955936936346220716198217427028321533203125.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |