Normalized defining polynomial
\( x^{26} - 12 x^{24} + 44 x^{22} - 24 x^{20} - 272 x^{18} + 1312 x^{16} - 1408 x^{14} - 3328 x^{12} + 30208 x^{10} - 19456 x^{8} + 46080 x^{6} + 204800 x^{4} + 131072 x^{2} - 8192 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(60205866708934265598847651067237790384128\)\(\medspace = 2^{39}\cdot 263^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $37.02$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 263$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{640} a^{14} + \frac{1}{160} a^{12} + \frac{1}{80} a^{8} + \frac{1}{20} a^{6} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{640} a^{15} + \frac{1}{160} a^{13} + \frac{1}{80} a^{9} + \frac{1}{20} a^{7} - \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{1280} a^{16} + \frac{1}{320} a^{12} + \frac{1}{160} a^{10} + \frac{1}{40} a^{6} - \frac{1}{10} a^{4} - \frac{2}{5}$, $\frac{1}{1280} a^{17} + \frac{1}{320} a^{13} + \frac{1}{160} a^{11} + \frac{1}{40} a^{7} - \frac{1}{10} a^{5} - \frac{2}{5} a$, $\frac{1}{2560} a^{18} - \frac{1}{320} a^{12} + \frac{1}{40} a^{6} - \frac{1}{5}$, $\frac{1}{2560} a^{19} - \frac{1}{320} a^{13} + \frac{1}{40} a^{7} - \frac{1}{5} a$, $\frac{1}{5120} a^{20} + \frac{1}{160} a^{12} + \frac{1}{40} a^{8} + \frac{1}{20} a^{6} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5120} a^{21} + \frac{1}{160} a^{13} + \frac{1}{40} a^{9} + \frac{1}{20} a^{7} + \frac{1}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{51200} a^{22} - \frac{1}{12800} a^{20} - \frac{1}{12800} a^{18} + \frac{1}{6400} a^{16} + \frac{1}{3200} a^{14} - \frac{1}{400} a^{12} - \frac{7}{800} a^{10} + \frac{1}{200} a^{8} + \frac{9}{200} a^{6} - \frac{3}{25} a^{2} - \frac{9}{25}$, $\frac{1}{51200} a^{23} - \frac{1}{12800} a^{21} - \frac{1}{12800} a^{19} + \frac{1}{6400} a^{17} + \frac{1}{3200} a^{15} - \frac{1}{400} a^{13} - \frac{7}{800} a^{11} + \frac{1}{200} a^{9} + \frac{9}{200} a^{7} - \frac{3}{25} a^{3} - \frac{9}{25} a$, $\frac{1}{4123689472000} a^{24} - \frac{15094789}{2061844736000} a^{22} - \frac{4680527}{1030922368000} a^{20} - \frac{8406689}{64432648000} a^{18} - \frac{18518299}{64432648000} a^{16} - \frac{24724933}{64432648000} a^{14} - \frac{79215211}{16108162000} a^{12} - \frac{321924899}{32216324000} a^{10} - \frac{5408989}{460233200} a^{8} - \frac{5475909}{4027040500} a^{6} + \frac{134919957}{2013520250} a^{4} + \frac{67403769}{1006760125} a^{2} + \frac{214299153}{1006760125}$, $\frac{1}{4123689472000} a^{25} - \frac{15094789}{2061844736000} a^{23} - \frac{4680527}{1030922368000} a^{21} - \frac{8406689}{64432648000} a^{19} - \frac{18518299}{64432648000} a^{17} - \frac{24724933}{64432648000} a^{15} - \frac{79215211}{16108162000} a^{13} - \frac{321924899}{32216324000} a^{11} - \frac{5408989}{460233200} a^{9} - \frac{5475909}{4027040500} a^{7} + \frac{134919957}{2013520250} a^{5} + \frac{67403769}{1006760125} a^{3} + \frac{214299153}{1006760125} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 12785934187.300812 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 13.1.330928743953809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $26$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
263 | Data not computed |