Normalized defining polynomial
\( x^{26} - 4 x^{25} + 20 x^{24} - 36 x^{23} + 151 x^{22} - 166 x^{21} + 575 x^{20} - 1143 x^{19} + 1160 x^{18} - 4286 x^{17} + 2641 x^{16} - 4158 x^{15} + 10417 x^{14} + 3815 x^{13} + 21287 x^{12} + 17505 x^{11} + 19313 x^{10} + 20293 x^{9} + 10822 x^{8} + 10971 x^{7} + 6883 x^{6} + 3740 x^{5} + 2969 x^{4} + 837 x^{3} + 388 x^{2} + 17 x - 1 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(4863650591176530100056566961783399658203125\)\(\medspace = 5^{13}\cdot 631^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $43.83$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 631$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{11} - \frac{2}{9} a^{3}$, $\frac{1}{27} a^{20} - \frac{1}{27} a^{16} - \frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{4}{27} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{4}{27} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{4}{27} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{4}{27}$, $\frac{1}{27} a^{21} - \frac{1}{27} a^{17} - \frac{1}{9} a^{14} + \frac{4}{27} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{4}{27} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} + \frac{4}{27} a^{5} + \frac{2}{9} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2} - \frac{4}{27} a - \frac{2}{9}$, $\frac{1}{1053} a^{22} + \frac{2}{117} a^{21} + \frac{4}{1053} a^{20} + \frac{4}{117} a^{19} - \frac{4}{1053} a^{18} - \frac{16}{351} a^{17} + \frac{2}{1053} a^{16} + \frac{28}{351} a^{15} + \frac{76}{1053} a^{14} + \frac{4}{39} a^{13} + \frac{133}{1053} a^{12} - \frac{19}{351} a^{11} - \frac{115}{1053} a^{10} - \frac{4}{351} a^{9} - \frac{118}{1053} a^{8} + \frac{116}{351} a^{7} - \frac{8}{81} a^{6} - \frac{5}{39} a^{5} + \frac{124}{1053} a^{4} + \frac{43}{351} a^{3} - \frac{16}{1053} a^{2} - \frac{121}{351} a + \frac{17}{1053}$, $\frac{1}{1053} a^{23} - \frac{8}{1053} a^{21} + \frac{1}{351} a^{20} + \frac{50}{1053} a^{19} + \frac{8}{351} a^{18} - \frac{31}{1053} a^{17} + \frac{1}{117} a^{16} - \frac{149}{1053} a^{15} - \frac{10}{117} a^{14} + \frac{22}{1053} a^{13} + \frac{5}{117} a^{12} - \frac{25}{1053} a^{11} - \frac{55}{351} a^{10} + \frac{137}{1053} a^{9} - \frac{8}{351} a^{8} - \frac{284}{1053} a^{7} - \frac{5}{39} a^{6} + \frac{409}{1053} a^{5} - \frac{142}{351} a^{4} + \frac{2}{1053} a^{3} - \frac{103}{351} a^{2} + \frac{38}{1053} a + \frac{41}{351}$, $\frac{1}{107417583} a^{24} + \frac{23381}{107417583} a^{23} + \frac{6718}{107417583} a^{22} - \frac{1217842}{107417583} a^{21} - \frac{367}{434889} a^{20} + \frac{3857914}{107417583} a^{19} - \frac{77491}{8262891} a^{18} + \frac{483640}{15345369} a^{17} + \frac{5611192}{107417583} a^{16} - \frac{1284019}{15345369} a^{15} - \frac{7625729}{107417583} a^{14} + \frac{6374912}{107417583} a^{13} - \frac{10424}{95823} a^{12} - \frac{142859}{15345369} a^{11} + \frac{4755575}{107417583} a^{10} + \frac{1544161}{15345369} a^{9} - \frac{7651841}{107417583} a^{8} + \frac{6823616}{107417583} a^{7} + \frac{25282735}{107417583} a^{6} - \frac{1436239}{15345369} a^{5} + \frac{1850699}{107417583} a^{4} + \frac{33925774}{107417583} a^{3} - \frac{41288398}{107417583} a^{2} + \frac{4583830}{107417583} a - \frac{14814697}{35805861}$, $\frac{1}{2448137292952961380369114895687217} a^{25} - \frac{2998958800635455157573670}{2448137292952961380369114895687217} a^{24} - \frac{31299202552457050347840247199}{2448137292952961380369114895687217} a^{23} - \frac{50696359637800002214849840280}{128849331208050598966795520825643} a^{22} + \frac{33102879175108800339750291334913}{2448137292952961380369114895687217} a^{21} - \frac{3508885327276555641159679456966}{272015254772551264485457210631913} a^{20} - \frac{62080555664724178375583267738425}{2448137292952961380369114895687217} a^{19} + \frac{2298871251859148991983126459792}{2448137292952961380369114895687217} a^{18} - \frac{115988520570106070880821315665178}{2448137292952961380369114895687217} a^{17} + \frac{1125436497030014709656062138401}{30223917196950140498384134514657} a^{16} + \frac{345516952475847548098318199854264}{2448137292952961380369114895687217} a^{15} + \frac{380511926911086445360400968516597}{2448137292952961380369114895687217} a^{14} - \frac{141155497036191901237804069810201}{2448137292952961380369114895687217} a^{13} + \frac{20658513681869727130159968662224}{272015254772551264485457210631913} a^{12} + \frac{202890556343023654139189923503917}{2448137292952961380369114895687217} a^{11} + \frac{81502309347391498995364711600793}{2448137292952961380369114895687217} a^{10} + \frac{10783970001622041996999346778380}{188318253304073952336085761206709} a^{9} + \frac{5452325452903149284257781596306}{42949777069350199655598506941881} a^{8} - \frac{16679503372428266968133275619093}{2448137292952961380369114895687217} a^{7} - \frac{1033900301606511830820105567345764}{2448137292952961380369114895687217} a^{6} + \frac{41036024070860738228332232731373}{128849331208050598966795520825643} a^{5} + \frac{64758773287011848796405199562126}{272015254772551264485457210631913} a^{4} + \frac{100312062321735173720029372498406}{349733898993280197195587842241031} a^{3} - \frac{39115732331886078717212252162824}{188318253304073952336085761206709} a^{2} - \frac{24763970074028723254994197862176}{90671751590850421495152403543971} a - \frac{1079173402391024926323521795247800}{2448137292952961380369114895687217}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 305647208281.4963 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 13.1.63121332085847281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $26$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{13}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{13}$ | $26$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $26$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
5 | Data not computed | ||||||
631 | Data not computed |