Normalized defining polynomial
\( x^{26} - 4 x + 1 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(3305785123966891271739006552418919035749682642944\)\(\medspace = 2^{26}\cdot 3\cdot 149\cdot 977\cdot 3541\cdot 12747387209041\cdot 2498880811540538989\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $73.47$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 149, 977, 3541, 12747387209041, 2498880811540538989$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{11} a^{25} + \frac{4}{11} a^{24} + \frac{5}{11} a^{23} - \frac{2}{11} a^{22} + \frac{3}{11} a^{21} + \frac{1}{11} a^{20} + \frac{4}{11} a^{19} + \frac{5}{11} a^{18} - \frac{2}{11} a^{17} + \frac{3}{11} a^{16} + \frac{1}{11} a^{15} + \frac{4}{11} a^{14} + \frac{5}{11} a^{13} - \frac{2}{11} a^{12} + \frac{3}{11} a^{11} + \frac{1}{11} a^{10} + \frac{4}{11} a^{9} + \frac{5}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} + \frac{1}{11} a^{5} + \frac{4}{11} a^{4} + \frac{5}{11} a^{3} - \frac{2}{11} a^{2} + \frac{3}{11} a - \frac{3}{11}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 149569312316316.25 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{26}$ (as 26T96):
A non-solvable group of order 403291461126605635584000000 |
The 2436 conjugacy class representatives for $S_{26}$ are not computed |
Character table for $S_{26}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $19{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $21{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $22{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.13.0.1}{13} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $26$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.13.0.1}{13} }{,}\,{\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $20{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $25{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed | ||||||
$149$ | $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
149.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
149.12.0.1 | $x^{12} - x + 89$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
977 | Data not computed | ||||||
3541 | Data not computed | ||||||
12747387209041 | Data not computed | ||||||
2498880811540538989 | Data not computed |