Normalized defining polynomial
\( x^{26} - 12 x^{24} + 54 x^{22} - 54 x^{20} + 891 x^{18} - 4617 x^{16} + 3645 x^{14} + 63423 x^{12} + 32805 x^{10} - 669222 x^{8} + 1299078 x^{6} + 8503056 x^{4} + 8503056 x^{2} - 1594323 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(252206691838729902820182233715746833170432\)\(\medspace = 2^{26}\cdot 3^{13}\cdot 191^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $39.12$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 191$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$, $\frac{1}{6561} a^{16}$, $\frac{1}{6561} a^{17}$, $\frac{1}{19683} a^{18}$, $\frac{1}{19683} a^{19}$, $\frac{1}{413343} a^{20} + \frac{1}{45927} a^{18} + \frac{1}{15309} a^{16} - \frac{1}{15309} a^{14} - \frac{1}{1701} a^{12} - \frac{1}{189} a^{8} - \frac{1}{189} a^{6} + \frac{2}{21} a^{2} - \frac{2}{7}$, $\frac{1}{413343} a^{21} + \frac{1}{45927} a^{19} + \frac{1}{15309} a^{17} - \frac{1}{15309} a^{15} - \frac{1}{1701} a^{13} - \frac{1}{189} a^{9} - \frac{1}{189} a^{7} + \frac{2}{21} a^{3} - \frac{2}{7} a$, $\frac{1}{1240029} a^{22} + \frac{1}{137781} a^{18} - \frac{1}{15309} a^{16} + \frac{2}{5103} a^{12} - \frac{1}{567} a^{10} + \frac{1}{567} a^{8} + \frac{1}{63} a^{6} + \frac{2}{63} a^{4} - \frac{1}{21} a^{2} - \frac{1}{7}$, $\frac{1}{1240029} a^{23} + \frac{1}{137781} a^{19} - \frac{1}{15309} a^{17} + \frac{2}{5103} a^{13} - \frac{1}{567} a^{11} + \frac{1}{567} a^{9} + \frac{1}{63} a^{7} + \frac{2}{63} a^{5} - \frac{1}{21} a^{3} - \frac{1}{7} a$, $\frac{1}{1147619195533503} a^{24} + \frac{144081863}{382539731844501} a^{22} - \frac{16226512}{42504414649389} a^{20} - \frac{144369395}{14168138216463} a^{18} - \frac{43879651}{14168138216463} a^{16} + \frac{711311152}{4722712738821} a^{14} - \frac{915385}{4727440179} a^{12} - \frac{813048479}{524745859869} a^{10} + \frac{1026038639}{174915286623} a^{8} - \frac{25093010}{2159447983} a^{6} - \frac{898360670}{19435031847} a^{4} + \frac{1049917522}{6478343949} a^{2} + \frac{940912370}{2159447983}$, $\frac{1}{1147619195533503} a^{25} + \frac{144081863}{382539731844501} a^{23} - \frac{16226512}{42504414649389} a^{21} - \frac{144369395}{14168138216463} a^{19} - \frac{43879651}{14168138216463} a^{17} + \frac{711311152}{4722712738821} a^{15} - \frac{915385}{4727440179} a^{13} - \frac{813048479}{524745859869} a^{11} + \frac{1026038639}{174915286623} a^{9} - \frac{25093010}{2159447983} a^{7} - \frac{898360670}{19435031847} a^{5} + \frac{1049917522}{6478343949} a^{3} + \frac{940912370}{2159447983} a$
Class group and class number
not computed
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{3}) \), 13.1.48551226272641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | $26$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}$ | $26$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed | ||||||
$191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.2292.2t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 191 $ | \(\Q(\sqrt{-573}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.191.2t1.a.a | $1$ | $ 191 $ | \(\Q(\sqrt{-191}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.27504.26t3.a.d | $2$ | $ 2^{4} \cdot 3^{2} \cdot 191 $ | 26.2.252206691838729902820182233715746833170432.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.191.13t2.a.e | $2$ | $ 191 $ | 13.1.48551226272641.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.191.13t2.a.c | $2$ | $ 191 $ | 13.1.48551226272641.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.27504.26t3.a.e | $2$ | $ 2^{4} \cdot 3^{2} \cdot 191 $ | 26.2.252206691838729902820182233715746833170432.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.27504.26t3.a.f | $2$ | $ 2^{4} \cdot 3^{2} \cdot 191 $ | 26.2.252206691838729902820182233715746833170432.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.191.13t2.a.d | $2$ | $ 191 $ | 13.1.48551226272641.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.191.13t2.a.b | $2$ | $ 191 $ | 13.1.48551226272641.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.191.13t2.a.a | $2$ | $ 191 $ | 13.1.48551226272641.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.27504.26t3.a.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 191 $ | 26.2.252206691838729902820182233715746833170432.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.27504.26t3.a.c | $2$ | $ 2^{4} \cdot 3^{2} \cdot 191 $ | 26.2.252206691838729902820182233715746833170432.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.191.13t2.a.f | $2$ | $ 191 $ | 13.1.48551226272641.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.27504.26t3.a.b | $2$ | $ 2^{4} \cdot 3^{2} \cdot 191 $ | 26.2.252206691838729902820182233715746833170432.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |