Normalized defining polynomial
\(x^{26} - 8 x^{24} + 24 x^{22} - 16 x^{20} + 176 x^{18} - 608 x^{16} + 320 x^{14} + 3712 x^{12} + 1280 x^{10} - 17408 x^{8} + 22528 x^{6} + 98304 x^{4} + 65536 x^{2} - 8192\)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1295896264146521980742254147120375267328\)\(\medspace = 2^{39}\cdot 191^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $31.94$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 191$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{7168} a^{20} + \frac{3}{3584} a^{18} + \frac{3}{1792} a^{16} - \frac{1}{896} a^{14} - \frac{3}{448} a^{12} - \frac{3}{112} a^{8} - \frac{1}{56} a^{6} + \frac{1}{7} a^{2} - \frac{2}{7}$, $\frac{1}{7168} a^{21} + \frac{3}{3584} a^{19} + \frac{3}{1792} a^{17} - \frac{1}{896} a^{15} - \frac{3}{448} a^{13} - \frac{3}{112} a^{9} - \frac{1}{56} a^{7} + \frac{1}{7} a^{3} - \frac{2}{7} a$, $\frac{1}{14336} a^{22} + \frac{1}{3584} a^{18} - \frac{3}{1792} a^{16} + \frac{1}{224} a^{12} - \frac{3}{224} a^{10} + \frac{1}{112} a^{8} + \frac{3}{56} a^{6} + \frac{1}{14} a^{4} - \frac{1}{14} a^{2} - \frac{1}{7}$, $\frac{1}{14336} a^{23} + \frac{1}{3584} a^{19} - \frac{3}{1792} a^{17} + \frac{1}{224} a^{13} - \frac{3}{224} a^{11} + \frac{1}{112} a^{9} + \frac{3}{56} a^{7} + \frac{1}{14} a^{5} - \frac{1}{14} a^{3} - \frac{1}{7} a$, $\frac{1}{8845098938368} a^{24} + \frac{144081863}{4422549469184} a^{22} - \frac{3042471}{138204670912} a^{20} - \frac{433108185}{1105637367296} a^{18} - \frac{43879651}{552818683648} a^{16} + \frac{44456947}{17275583864} a^{14} - \frac{8238465}{3735261376} a^{12} - \frac{813048479}{69102335456} a^{10} + \frac{1026038639}{34551167728} a^{8} - \frac{338755635}{8637791932} a^{6} - \frac{449180335}{4318895966} a^{4} + \frac{524958761}{2159447983} a^{2} + \frac{940912370}{2159447983}$, $\frac{1}{8845098938368} a^{25} + \frac{144081863}{4422549469184} a^{23} - \frac{3042471}{138204670912} a^{21} - \frac{433108185}{1105637367296} a^{19} - \frac{43879651}{552818683648} a^{17} + \frac{44456947}{17275583864} a^{15} - \frac{8238465}{3735261376} a^{13} - \frac{813048479}{69102335456} a^{11} + \frac{1026038639}{34551167728} a^{9} - \frac{338755635}{8637791932} a^{7} - \frac{449180335}{4318895966} a^{5} + \frac{524958761}{2159447983} a^{3} + \frac{940912370}{2159447983} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1293801547.1375248 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 13.1.48551226272641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $26$ | $26$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}$ | $26$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$191$ | $\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{191}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |