\\ Pari/GP code for working with number field 26.2.11717236087522974259320261669002899863109632.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^26 - 18*y^24 + 99*y^22 - 81*y^20 - 1377*y^18 + 9963*y^16 - 16038*y^14 - 56862*y^12 + 774198*y^10 - 747954*y^8 + 2657205*y^6 + 17714700*y^4 + 17006112*y^2 - 1594323, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^26 - 18*x^24 + 99*x^22 - 81*x^20 - 1377*x^18 + 9963*x^16 - 16038*x^14 - 56862*x^12 + 774198*x^10 - 747954*x^8 + 2657205*x^6 + 17714700*x^4 + 17006112*x^2 - 1594323, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])