Properties

Label 26.0.858...752.2
Degree $26$
Signature $[0, 13]$
Discriminant $-8.584\times 10^{50}$
Root discriminant \(90.99\)
Ramified primes $2,53$
Class number $78$ (GRH)
Class group [78] (GRH)
Galois group $D_{26}$ (as 26T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752)
 
gp: K = bnfinit(y^26 - 2*y^25 + 6*y^24 + 192*y^23 + 229*y^22 - 2372*y^21 - 7609*y^20 + 13316*y^19 + 151094*y^18 + 450746*y^17 + 611459*y^16 + 157196*y^15 - 479713*y^14 + 608030*y^13 + 4854322*y^12 + 9743644*y^11 + 13689711*y^10 + 13728588*y^9 - 9234035*y^8 - 25518536*y^7 + 16531986*y^6 + 27343458*y^5 - 19132335*y^4 - 12522276*y^3 + 16740756*y^2 - 6858432*y + 1084752, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752)
 

\( x^{26} - 2 x^{25} + 6 x^{24} + 192 x^{23} + 229 x^{22} - 2372 x^{21} - 7609 x^{20} + 13316 x^{19} + \cdots + 1084752 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-858374143948696578292647084480714777491390439882752\) \(\medspace = -\,2^{26}\cdot 53^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(90.99\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 53^{25/26}\approx 90.98872147271963$
Ramified primes:   \(2\), \(53\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-53}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{3}+\frac{1}{3}a$, $\frac{1}{6}a^{10}-\frac{1}{2}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{6}a^{11}-\frac{1}{2}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{12}a^{12}-\frac{1}{12}a^{11}-\frac{1}{12}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{3}a^{4}-\frac{5}{12}a^{3}-\frac{1}{4}a^{2}+\frac{1}{3}a$, $\frac{1}{12}a^{13}-\frac{1}{12}a^{11}-\frac{1}{12}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{12}a^{5}+\frac{1}{4}a^{4}+\frac{1}{3}a^{3}+\frac{1}{12}a^{2}$, $\frac{1}{12}a^{14}-\frac{1}{3}a^{6}+\frac{1}{4}a^{2}$, $\frac{1}{12}a^{15}+\frac{1}{6}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{72}a^{16}-\frac{1}{24}a^{15}+\frac{1}{36}a^{14}-\frac{1}{36}a^{12}-\frac{1}{12}a^{11}-\frac{1}{18}a^{10}-\frac{1}{12}a^{9}+\frac{1}{36}a^{8}+\frac{1}{6}a^{7}-\frac{7}{36}a^{6}-\frac{1}{4}a^{5}+\frac{23}{72}a^{4}+\frac{11}{24}a^{3}+\frac{7}{18}a^{2}+\frac{1}{3}a$, $\frac{1}{72}a^{17}-\frac{1}{72}a^{15}-\frac{1}{36}a^{13}+\frac{1}{36}a^{11}-\frac{1}{12}a^{10}-\frac{1}{18}a^{9}-\frac{1}{4}a^{8}-\frac{1}{36}a^{7}-\frac{31}{72}a^{5}+\frac{1}{4}a^{4}+\frac{13}{72}a^{3}+\frac{1}{12}a^{2}+\frac{1}{3}a$, $\frac{1}{72}a^{18}-\frac{1}{24}a^{15}+\frac{1}{18}a^{10}+\frac{1}{6}a^{7}+\frac{3}{8}a^{6}-\frac{1}{2}a^{5}-\frac{1}{8}a^{3}+\frac{1}{18}a^{2}$, $\frac{1}{2376}a^{19}+\frac{1}{792}a^{18}-\frac{1}{1188}a^{17}-\frac{1}{792}a^{16}-\frac{67}{2376}a^{15}+\frac{4}{99}a^{14}+\frac{23}{1188}a^{13}-\frac{7}{396}a^{12}-\frac{7}{198}a^{11}+\frac{19}{396}a^{10}+\frac{79}{1188}a^{9}+\frac{1}{9}a^{8}-\frac{49}{216}a^{7}+\frac{1}{792}a^{6}-\frac{557}{1188}a^{5}+\frac{13}{72}a^{4}+\frac{305}{2376}a^{3}+\frac{1}{11}a^{2}+\frac{5}{11}a-\frac{1}{11}$, $\frac{1}{4752}a^{20}-\frac{1}{4752}a^{19}-\frac{7}{2376}a^{18}+\frac{5}{4752}a^{17}+\frac{1}{432}a^{16}-\frac{2}{297}a^{15}+\frac{95}{2376}a^{14}+\frac{85}{2376}a^{13}-\frac{1}{99}a^{12}-\frac{19}{264}a^{11}-\frac{83}{2376}a^{10}+\frac{7}{1188}a^{9}+\frac{83}{432}a^{8}+\frac{179}{4752}a^{7}-\frac{629}{2376}a^{6}-\frac{1451}{4752}a^{5}-\frac{1081}{4752}a^{4}-\frac{53}{1188}a^{3}-\frac{59}{396}a^{2}-\frac{19}{66}a+\frac{2}{11}$, $\frac{1}{4752}a^{21}-\frac{1}{4752}a^{19}-\frac{1}{144}a^{18}-\frac{1}{396}a^{17}+\frac{1}{1584}a^{16}+\frac{1}{396}a^{15}-\frac{1}{33}a^{14}-\frac{13}{2376}a^{13}+\frac{13}{792}a^{12}-\frac{25}{1188}a^{11}+\frac{23}{792}a^{10}-\frac{5}{1584}a^{9}-\frac{85}{396}a^{8}+\frac{29}{1584}a^{7}-\frac{113}{528}a^{6}-\frac{4}{27}a^{5}-\frac{299}{1584}a^{4}-\frac{305}{2376}a^{3}-\frac{119}{396}a^{2}-\frac{17}{66}a-\frac{5}{11}$, $\frac{1}{99792}a^{22}-\frac{1}{11088}a^{21}-\frac{1}{16632}a^{20}-\frac{5}{33264}a^{19}+\frac{103}{99792}a^{18}+\frac{23}{8316}a^{17}+\frac{32}{6237}a^{16}-\frac{8}{693}a^{15}-\frac{29}{2268}a^{14}-\frac{191}{16632}a^{13}+\frac{1615}{49896}a^{12}+\frac{59}{924}a^{11}-\frac{373}{14256}a^{10}-\frac{923}{33264}a^{9}-\frac{7813}{49896}a^{8}-\frac{137}{1008}a^{7}-\frac{179}{1008}a^{6}-\frac{985}{4158}a^{5}+\frac{9767}{49896}a^{4}-\frac{1979}{16632}a^{3}-\frac{101}{2772}a^{2}+\frac{19}{66}a-\frac{3}{7}$, $\frac{1}{35326368}a^{23}-\frac{167}{35326368}a^{22}-\frac{191}{5887728}a^{21}+\frac{265}{2943864}a^{20}-\frac{355}{4415796}a^{19}-\frac{71671}{17663184}a^{18}+\frac{22613}{35326368}a^{17}+\frac{111257}{35326368}a^{16}+\frac{29027}{1261656}a^{15}-\frac{105673}{8831592}a^{14}+\frac{9349}{1103949}a^{13}+\frac{5479}{149688}a^{12}+\frac{1570631}{35326368}a^{11}-\frac{295873}{35326368}a^{10}+\frac{196013}{2523312}a^{9}+\frac{1725277}{8831592}a^{8}-\frac{5261}{245322}a^{7}+\frac{1098943}{5887728}a^{6}+\frac{15315931}{35326368}a^{5}-\frac{11698985}{35326368}a^{4}+\frac{177962}{367983}a^{3}-\frac{141605}{981288}a^{2}-\frac{9629}{40887}a+\frac{12613}{27258}$, $\frac{1}{2331540288}a^{24}-\frac{1}{72860634}a^{23}-\frac{1997}{777180096}a^{22}+\frac{27491}{388590048}a^{21}-\frac{25015}{291442536}a^{20}-\frac{83893}{1165770144}a^{19}-\frac{2102209}{2331540288}a^{18}+\frac{2220455}{582885072}a^{17}-\frac{6164401}{2331540288}a^{16}-\frac{165511}{145721268}a^{15}-\frac{305287}{83269296}a^{14}+\frac{19191239}{582885072}a^{13}+\frac{41416163}{2331540288}a^{12}-\frac{15460877}{291442536}a^{11}+\frac{140617651}{2331540288}a^{10}+\frac{22500017}{1165770144}a^{9}+\frac{14722453}{97147512}a^{8}-\frac{630325}{6586272}a^{7}+\frac{736344757}{2331540288}a^{6}-\frac{144221621}{582885072}a^{5}-\frac{77235659}{259060032}a^{4}-\frac{923671}{3084048}a^{3}+\frac{1450309}{3084048}a^{2}+\frac{58483}{899514}a+\frac{287807}{599676}$, $\frac{1}{90\!\cdots\!16}a^{25}+\frac{15\!\cdots\!57}{90\!\cdots\!16}a^{24}-\frac{12\!\cdots\!31}{13\!\cdots\!64}a^{23}-\frac{14\!\cdots\!87}{30\!\cdots\!72}a^{22}-\frac{29\!\cdots\!77}{45\!\cdots\!08}a^{21}-\frac{37\!\cdots\!05}{45\!\cdots\!08}a^{20}+\frac{76\!\cdots\!31}{82\!\cdots\!56}a^{19}-\frac{75\!\cdots\!47}{12\!\cdots\!88}a^{18}+\frac{80\!\cdots\!61}{47\!\cdots\!64}a^{17}+\frac{12\!\cdots\!61}{21\!\cdots\!12}a^{16}+\frac{26\!\cdots\!81}{22\!\cdots\!04}a^{15}-\frac{13\!\cdots\!55}{11\!\cdots\!52}a^{14}-\frac{49\!\cdots\!03}{12\!\cdots\!88}a^{13}-\frac{28\!\cdots\!49}{90\!\cdots\!16}a^{12}-\frac{63\!\cdots\!33}{90\!\cdots\!16}a^{11}+\frac{81\!\cdots\!79}{19\!\cdots\!28}a^{10}+\frac{13\!\cdots\!33}{15\!\cdots\!36}a^{9}-\frac{25\!\cdots\!21}{13\!\cdots\!76}a^{8}-\frac{95\!\cdots\!83}{47\!\cdots\!64}a^{7}+\frac{19\!\cdots\!07}{82\!\cdots\!56}a^{6}-\frac{39\!\cdots\!71}{10\!\cdots\!24}a^{5}-\frac{46\!\cdots\!93}{14\!\cdots\!32}a^{4}-\frac{44\!\cdots\!85}{20\!\cdots\!56}a^{3}-\frac{24\!\cdots\!67}{28\!\cdots\!84}a^{2}+\frac{18\!\cdots\!83}{37\!\cdots\!64}a+\frac{17\!\cdots\!37}{78\!\cdots\!44}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

$C_{78}$, which has order $78$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{21\!\cdots\!51}{56\!\cdots\!76}a^{25}-\frac{59\!\cdots\!83}{11\!\cdots\!52}a^{24}+\frac{11\!\cdots\!63}{58\!\cdots\!36}a^{23}+\frac{40\!\cdots\!95}{54\!\cdots\!12}a^{22}+\frac{75\!\cdots\!83}{56\!\cdots\!76}a^{21}-\frac{23\!\cdots\!43}{28\!\cdots\!88}a^{20}-\frac{11\!\cdots\!61}{32\!\cdots\!26}a^{19}+\frac{34\!\cdots\!67}{11\!\cdots\!52}a^{18}+\frac{89\!\cdots\!65}{14\!\cdots\!52}a^{17}+\frac{55\!\cdots\!19}{26\!\cdots\!64}a^{16}+\frac{49\!\cdots\!33}{14\!\cdots\!44}a^{15}+\frac{67\!\cdots\!47}{28\!\cdots\!88}a^{14}-\frac{58\!\cdots\!13}{56\!\cdots\!76}a^{13}+\frac{13\!\cdots\!19}{11\!\cdots\!52}a^{12}+\frac{55\!\cdots\!63}{28\!\cdots\!88}a^{11}+\frac{16\!\cdots\!33}{34\!\cdots\!88}a^{10}+\frac{14\!\cdots\!97}{18\!\cdots\!92}a^{9}+\frac{79\!\cdots\!33}{86\!\cdots\!36}a^{8}+\frac{10\!\cdots\!31}{14\!\cdots\!52}a^{7}-\frac{11\!\cdots\!49}{10\!\cdots\!32}a^{6}-\frac{24\!\cdots\!71}{31\!\cdots\!32}a^{5}+\frac{15\!\cdots\!19}{12\!\cdots\!28}a^{4}+\frac{75\!\cdots\!53}{15\!\cdots\!92}a^{3}-\frac{81\!\cdots\!19}{11\!\cdots\!16}a^{2}+\frac{14\!\cdots\!16}{73\!\cdots\!01}a+\frac{82\!\cdots\!91}{97\!\cdots\!68}$, $\frac{25\!\cdots\!49}{11\!\cdots\!52}a^{25}-\frac{23\!\cdots\!19}{96\!\cdots\!64}a^{24}+\frac{14\!\cdots\!65}{16\!\cdots\!08}a^{23}+\frac{42\!\cdots\!61}{94\!\cdots\!96}a^{22}+\frac{12\!\cdots\!13}{14\!\cdots\!44}a^{21}-\frac{28\!\cdots\!31}{56\!\cdots\!76}a^{20}-\frac{22\!\cdots\!71}{10\!\cdots\!32}a^{19}+\frac{12\!\cdots\!99}{81\!\cdots\!68}a^{18}+\frac{31\!\cdots\!83}{85\!\cdots\!44}a^{17}+\frac{17\!\cdots\!01}{13\!\cdots\!32}a^{16}+\frac{64\!\cdots\!15}{28\!\cdots\!88}a^{15}+\frac{48\!\cdots\!11}{28\!\cdots\!88}a^{14}-\frac{37\!\cdots\!57}{11\!\cdots\!52}a^{13}+\frac{57\!\cdots\!13}{56\!\cdots\!76}a^{12}+\frac{13\!\cdots\!75}{11\!\cdots\!52}a^{11}+\frac{11\!\cdots\!67}{37\!\cdots\!69}a^{10}+\frac{24\!\cdots\!55}{47\!\cdots\!48}a^{9}+\frac{10\!\cdots\!57}{17\!\cdots\!72}a^{8}+\frac{81\!\cdots\!15}{59\!\cdots\!08}a^{7}-\frac{31\!\cdots\!83}{51\!\cdots\!16}a^{6}+\frac{13\!\cdots\!39}{42\!\cdots\!76}a^{5}+\frac{69\!\cdots\!05}{90\!\cdots\!52}a^{4}-\frac{42\!\cdots\!01}{10\!\cdots\!44}a^{3}-\frac{11\!\cdots\!63}{27\!\cdots\!48}a^{2}+\frac{66\!\cdots\!27}{29\!\cdots\!04}a-\frac{24\!\cdots\!33}{48\!\cdots\!34}$, $\frac{34\!\cdots\!39}{40\!\cdots\!84}a^{25}-\frac{16\!\cdots\!05}{11\!\cdots\!52}a^{24}+\frac{34\!\cdots\!39}{82\!\cdots\!04}a^{23}+\frac{62\!\cdots\!47}{37\!\cdots\!84}a^{22}+\frac{14\!\cdots\!99}{56\!\cdots\!76}a^{21}-\frac{51\!\cdots\!02}{25\!\cdots\!49}a^{20}-\frac{37\!\cdots\!37}{51\!\cdots\!16}a^{19}+\frac{11\!\cdots\!85}{11\!\cdots\!52}a^{18}+\frac{40\!\cdots\!27}{29\!\cdots\!04}a^{17}+\frac{11\!\cdots\!57}{26\!\cdots\!64}a^{16}+\frac{60\!\cdots\!27}{10\!\cdots\!96}a^{15}+\frac{43\!\cdots\!07}{28\!\cdots\!88}a^{14}-\frac{72\!\cdots\!47}{14\!\cdots\!44}a^{13}+\frac{66\!\cdots\!37}{11\!\cdots\!52}a^{12}+\frac{27\!\cdots\!05}{56\!\cdots\!76}a^{11}+\frac{21\!\cdots\!97}{24\!\cdots\!16}a^{10}+\frac{24\!\cdots\!85}{21\!\cdots\!88}a^{9}+\frac{27\!\cdots\!19}{21\!\cdots\!84}a^{8}-\frac{60\!\cdots\!73}{29\!\cdots\!04}a^{7}-\frac{23\!\cdots\!51}{10\!\cdots\!32}a^{6}+\frac{20\!\cdots\!23}{27\!\cdots\!56}a^{5}+\frac{31\!\cdots\!25}{12\!\cdots\!28}a^{4}-\frac{28\!\cdots\!43}{10\!\cdots\!44}a^{3}-\frac{49\!\cdots\!51}{35\!\cdots\!48}a^{2}+\frac{53\!\cdots\!99}{81\!\cdots\!89}a-\frac{23\!\cdots\!77}{32\!\cdots\!56}$, $\frac{13\!\cdots\!15}{37\!\cdots\!84}a^{25}-\frac{11\!\cdots\!03}{21\!\cdots\!88}a^{24}+\frac{31\!\cdots\!99}{16\!\cdots\!08}a^{23}+\frac{45\!\cdots\!29}{63\!\cdots\!64}a^{22}+\frac{71\!\cdots\!79}{59\!\cdots\!81}a^{21}-\frac{50\!\cdots\!61}{63\!\cdots\!64}a^{20}-\frac{15\!\cdots\!35}{49\!\cdots\!92}a^{19}+\frac{20\!\cdots\!09}{63\!\cdots\!64}a^{18}+\frac{37\!\cdots\!03}{66\!\cdots\!12}a^{17}+\frac{14\!\cdots\!83}{73\!\cdots\!24}a^{16}+\frac{10\!\cdots\!91}{31\!\cdots\!32}a^{15}+\frac{11\!\cdots\!49}{50\!\cdots\!64}a^{14}-\frac{22\!\cdots\!43}{42\!\cdots\!76}a^{13}+\frac{46\!\cdots\!39}{23\!\cdots\!32}a^{12}+\frac{10\!\cdots\!05}{54\!\cdots\!12}a^{11}+\frac{61\!\cdots\!83}{13\!\cdots\!12}a^{10}+\frac{87\!\cdots\!77}{11\!\cdots\!62}a^{9}+\frac{51\!\cdots\!73}{57\!\cdots\!24}a^{8}+\frac{26\!\cdots\!81}{19\!\cdots\!36}a^{7}-\frac{48\!\cdots\!51}{57\!\cdots\!24}a^{6}+\frac{60\!\cdots\!29}{37\!\cdots\!84}a^{5}+\frac{16\!\cdots\!25}{15\!\cdots\!16}a^{4}-\frac{14\!\cdots\!61}{10\!\cdots\!44}a^{3}-\frac{45\!\cdots\!01}{87\!\cdots\!12}a^{2}+\frac{98\!\cdots\!55}{29\!\cdots\!04}a-\frac{60\!\cdots\!48}{81\!\cdots\!89}$, $\frac{13\!\cdots\!79}{22\!\cdots\!04}a^{25}-\frac{20\!\cdots\!91}{22\!\cdots\!04}a^{24}+\frac{10\!\cdots\!99}{32\!\cdots\!16}a^{23}+\frac{87\!\cdots\!21}{75\!\cdots\!68}a^{22}+\frac{22\!\cdots\!35}{11\!\cdots\!52}a^{21}-\frac{14\!\cdots\!03}{11\!\cdots\!52}a^{20}-\frac{10\!\cdots\!31}{20\!\cdots\!64}a^{19}+\frac{11\!\cdots\!11}{22\!\cdots\!04}a^{18}+\frac{11\!\cdots\!31}{11\!\cdots\!16}a^{17}+\frac{23\!\cdots\!19}{75\!\cdots\!04}a^{16}+\frac{29\!\cdots\!71}{56\!\cdots\!76}a^{15}+\frac{51\!\cdots\!55}{14\!\cdots\!44}a^{14}-\frac{21\!\cdots\!31}{22\!\cdots\!04}a^{13}+\frac{10\!\cdots\!53}{32\!\cdots\!72}a^{12}+\frac{69\!\cdots\!25}{22\!\cdots\!04}a^{11}+\frac{35\!\cdots\!51}{48\!\cdots\!32}a^{10}+\frac{21\!\cdots\!69}{18\!\cdots\!04}a^{9}+\frac{49\!\cdots\!45}{34\!\cdots\!44}a^{8}+\frac{32\!\cdots\!61}{17\!\cdots\!88}a^{7}-\frac{28\!\cdots\!73}{20\!\cdots\!64}a^{6}+\frac{22\!\cdots\!53}{75\!\cdots\!68}a^{5}+\frac{45\!\cdots\!09}{25\!\cdots\!56}a^{4}-\frac{30\!\cdots\!69}{13\!\cdots\!18}a^{3}-\frac{62\!\cdots\!03}{70\!\cdots\!96}a^{2}+\frac{35\!\cdots\!75}{65\!\cdots\!12}a-\frac{82\!\cdots\!77}{65\!\cdots\!12}$, $\frac{17\!\cdots\!55}{54\!\cdots\!12}a^{25}-\frac{90\!\cdots\!41}{18\!\cdots\!92}a^{24}+\frac{27\!\cdots\!63}{16\!\cdots\!08}a^{23}+\frac{97\!\cdots\!31}{15\!\cdots\!16}a^{22}+\frac{98\!\cdots\!69}{94\!\cdots\!96}a^{21}-\frac{13\!\cdots\!13}{18\!\cdots\!92}a^{20}-\frac{32\!\cdots\!37}{11\!\cdots\!48}a^{19}+\frac{54\!\cdots\!95}{18\!\cdots\!92}a^{18}+\frac{99\!\cdots\!49}{19\!\cdots\!36}a^{17}+\frac{10\!\cdots\!57}{62\!\cdots\!92}a^{16}+\frac{26\!\cdots\!25}{94\!\cdots\!96}a^{15}+\frac{22\!\cdots\!99}{13\!\cdots\!28}a^{14}-\frac{49\!\cdots\!89}{37\!\cdots\!84}a^{13}+\frac{94\!\cdots\!53}{18\!\cdots\!92}a^{12}+\frac{32\!\cdots\!71}{21\!\cdots\!92}a^{11}+\frac{78\!\cdots\!87}{20\!\cdots\!68}a^{10}+\frac{58\!\cdots\!17}{94\!\cdots\!96}a^{9}+\frac{13\!\cdots\!53}{19\!\cdots\!08}a^{8}-\frac{16\!\cdots\!45}{19\!\cdots\!36}a^{7}-\frac{26\!\cdots\!47}{24\!\cdots\!96}a^{6}-\frac{66\!\cdots\!55}{37\!\cdots\!84}a^{5}+\frac{55\!\cdots\!87}{63\!\cdots\!64}a^{4}+\frac{16\!\cdots\!97}{10\!\cdots\!44}a^{3}-\frac{25\!\cdots\!73}{58\!\cdots\!08}a^{2}+\frac{74\!\cdots\!63}{32\!\cdots\!56}a-\frac{19\!\cdots\!03}{48\!\cdots\!34}$, $\frac{32\!\cdots\!57}{28\!\cdots\!88}a^{25}-\frac{98\!\cdots\!47}{56\!\cdots\!76}a^{24}+\frac{49\!\cdots\!83}{82\!\cdots\!04}a^{23}+\frac{10\!\cdots\!31}{47\!\cdots\!48}a^{22}+\frac{10\!\cdots\!83}{28\!\cdots\!88}a^{21}-\frac{71\!\cdots\!17}{28\!\cdots\!88}a^{20}-\frac{63\!\cdots\!95}{64\!\cdots\!52}a^{19}+\frac{59\!\cdots\!03}{56\!\cdots\!76}a^{18}+\frac{52\!\cdots\!47}{29\!\cdots\!04}a^{17}+\frac{39\!\cdots\!11}{66\!\cdots\!16}a^{16}+\frac{13\!\cdots\!87}{14\!\cdots\!44}a^{15}+\frac{92\!\cdots\!23}{14\!\cdots\!44}a^{14}-\frac{65\!\cdots\!51}{28\!\cdots\!88}a^{13}+\frac{47\!\cdots\!41}{81\!\cdots\!68}a^{12}+\frac{33\!\cdots\!37}{56\!\cdots\!76}a^{11}+\frac{10\!\cdots\!13}{75\!\cdots\!38}a^{10}+\frac{21\!\cdots\!05}{94\!\cdots\!96}a^{9}+\frac{22\!\cdots\!91}{86\!\cdots\!36}a^{8}+\frac{16\!\cdots\!61}{74\!\cdots\!76}a^{7}-\frac{14\!\cdots\!45}{51\!\cdots\!16}a^{6}+\frac{11\!\cdots\!85}{21\!\cdots\!88}a^{5}+\frac{51\!\cdots\!05}{15\!\cdots\!92}a^{4}-\frac{71\!\cdots\!71}{13\!\cdots\!18}a^{3}-\frac{74\!\cdots\!35}{43\!\cdots\!06}a^{2}+\frac{15\!\cdots\!23}{14\!\cdots\!02}a-\frac{19\!\cdots\!89}{81\!\cdots\!89}$, $\frac{41\!\cdots\!39}{90\!\cdots\!16}a^{25}-\frac{88\!\cdots\!11}{12\!\cdots\!88}a^{24}+\frac{35\!\cdots\!07}{14\!\cdots\!96}a^{23}+\frac{38\!\cdots\!77}{43\!\cdots\!96}a^{22}+\frac{69\!\cdots\!17}{45\!\cdots\!08}a^{21}-\frac{46\!\cdots\!75}{45\!\cdots\!08}a^{20}-\frac{30\!\cdots\!25}{75\!\cdots\!96}a^{19}+\frac{36\!\cdots\!41}{90\!\cdots\!16}a^{18}+\frac{34\!\cdots\!95}{47\!\cdots\!64}a^{17}+\frac{51\!\cdots\!95}{21\!\cdots\!12}a^{16}+\frac{13\!\cdots\!37}{32\!\cdots\!72}a^{15}+\frac{32\!\cdots\!51}{11\!\cdots\!52}a^{14}-\frac{63\!\cdots\!99}{90\!\cdots\!16}a^{13}+\frac{21\!\cdots\!09}{90\!\cdots\!16}a^{12}+\frac{21\!\cdots\!41}{90\!\cdots\!16}a^{11}+\frac{11\!\cdots\!01}{19\!\cdots\!28}a^{10}+\frac{14\!\cdots\!19}{15\!\cdots\!36}a^{9}+\frac{15\!\cdots\!73}{13\!\cdots\!76}a^{8}+\frac{77\!\cdots\!43}{47\!\cdots\!64}a^{7}-\frac{91\!\cdots\!27}{82\!\cdots\!56}a^{6}+\frac{47\!\cdots\!89}{30\!\cdots\!72}a^{5}+\frac{13\!\cdots\!67}{10\!\cdots\!24}a^{4}-\frac{35\!\cdots\!81}{14\!\cdots\!92}a^{3}-\frac{64\!\cdots\!35}{93\!\cdots\!28}a^{2}+\frac{11\!\cdots\!67}{23\!\cdots\!32}a-\frac{29\!\cdots\!23}{26\!\cdots\!48}$, $\frac{28\!\cdots\!09}{68\!\cdots\!52}a^{25}-\frac{44\!\cdots\!67}{68\!\cdots\!52}a^{24}+\frac{15\!\cdots\!87}{69\!\cdots\!56}a^{23}+\frac{12\!\cdots\!67}{15\!\cdots\!88}a^{22}+\frac{31\!\cdots\!21}{23\!\cdots\!32}a^{21}-\frac{22\!\cdots\!79}{23\!\cdots\!32}a^{20}-\frac{15\!\cdots\!11}{43\!\cdots\!24}a^{19}+\frac{18\!\cdots\!01}{47\!\cdots\!64}a^{18}+\frac{31\!\cdots\!77}{47\!\cdots\!64}a^{17}+\frac{24\!\cdots\!71}{11\!\cdots\!48}a^{16}+\frac{42\!\cdots\!75}{11\!\cdots\!16}a^{15}+\frac{13\!\cdots\!95}{59\!\cdots\!08}a^{14}-\frac{44\!\cdots\!35}{47\!\cdots\!64}a^{13}+\frac{10\!\cdots\!05}{47\!\cdots\!64}a^{12}+\frac{14\!\cdots\!87}{68\!\cdots\!52}a^{11}+\frac{51\!\cdots\!85}{10\!\cdots\!12}a^{10}+\frac{21\!\cdots\!69}{26\!\cdots\!48}a^{9}+\frac{67\!\cdots\!13}{72\!\cdots\!04}a^{8}+\frac{21\!\cdots\!57}{47\!\cdots\!64}a^{7}-\frac{44\!\cdots\!19}{43\!\cdots\!24}a^{6}+\frac{39\!\cdots\!21}{15\!\cdots\!88}a^{5}+\frac{65\!\cdots\!55}{53\!\cdots\!96}a^{4}-\frac{63\!\cdots\!79}{24\!\cdots\!56}a^{3}-\frac{13\!\cdots\!75}{21\!\cdots\!48}a^{2}+\frac{53\!\cdots\!31}{12\!\cdots\!28}a-\frac{61\!\cdots\!07}{58\!\cdots\!68}$, $\frac{37\!\cdots\!83}{75\!\cdots\!68}a^{25}-\frac{57\!\cdots\!47}{75\!\cdots\!68}a^{24}+\frac{28\!\cdots\!15}{10\!\cdots\!72}a^{23}+\frac{24\!\cdots\!05}{25\!\cdots\!56}a^{22}+\frac{60\!\cdots\!87}{37\!\cdots\!84}a^{21}-\frac{70\!\cdots\!41}{64\!\cdots\!76}a^{20}-\frac{29\!\cdots\!55}{68\!\cdots\!88}a^{19}+\frac{34\!\cdots\!03}{75\!\cdots\!68}a^{18}+\frac{30\!\cdots\!91}{39\!\cdots\!72}a^{17}+\frac{46\!\cdots\!45}{17\!\cdots\!76}a^{16}+\frac{81\!\cdots\!47}{18\!\cdots\!92}a^{15}+\frac{68\!\cdots\!61}{23\!\cdots\!24}a^{14}-\frac{10\!\cdots\!17}{10\!\cdots\!24}a^{13}+\frac{19\!\cdots\!79}{75\!\cdots\!68}a^{12}+\frac{19\!\cdots\!37}{75\!\cdots\!68}a^{11}+\frac{13\!\cdots\!21}{23\!\cdots\!92}a^{10}+\frac{12\!\cdots\!17}{12\!\cdots\!28}a^{9}+\frac{44\!\cdots\!91}{38\!\cdots\!16}a^{8}+\frac{58\!\cdots\!89}{57\!\cdots\!96}a^{7}-\frac{84\!\cdots\!37}{68\!\cdots\!88}a^{6}+\frac{19\!\cdots\!15}{84\!\cdots\!52}a^{5}+\frac{37\!\cdots\!15}{25\!\cdots\!56}a^{4}-\frac{44\!\cdots\!69}{18\!\cdots\!74}a^{3}-\frac{51\!\cdots\!73}{70\!\cdots\!96}a^{2}+\frac{27\!\cdots\!13}{58\!\cdots\!08}a-\frac{30\!\cdots\!07}{27\!\cdots\!48}$, $\frac{11\!\cdots\!59}{90\!\cdots\!16}a^{25}-\frac{26\!\cdots\!55}{12\!\cdots\!88}a^{24}+\frac{30\!\cdots\!65}{43\!\cdots\!88}a^{23}+\frac{10\!\cdots\!57}{43\!\cdots\!96}a^{22}+\frac{16\!\cdots\!73}{45\!\cdots\!08}a^{21}-\frac{12\!\cdots\!03}{45\!\cdots\!08}a^{20}-\frac{85\!\cdots\!35}{82\!\cdots\!56}a^{19}+\frac{11\!\cdots\!49}{90\!\cdots\!16}a^{18}+\frac{91\!\cdots\!55}{47\!\cdots\!64}a^{17}+\frac{13\!\cdots\!71}{21\!\cdots\!12}a^{16}+\frac{23\!\cdots\!15}{22\!\cdots\!04}a^{15}+\frac{84\!\cdots\!43}{11\!\cdots\!52}a^{14}+\frac{16\!\cdots\!29}{90\!\cdots\!16}a^{13}+\frac{14\!\cdots\!05}{90\!\cdots\!16}a^{12}+\frac{65\!\cdots\!97}{90\!\cdots\!16}a^{11}+\frac{28\!\cdots\!61}{19\!\cdots\!28}a^{10}+\frac{35\!\cdots\!55}{15\!\cdots\!36}a^{9}+\frac{42\!\cdots\!85}{13\!\cdots\!76}a^{8}+\frac{50\!\cdots\!83}{47\!\cdots\!64}a^{7}-\frac{82\!\cdots\!43}{82\!\cdots\!56}a^{6}+\frac{11\!\cdots\!05}{30\!\cdots\!72}a^{5}+\frac{48\!\cdots\!71}{10\!\cdots\!24}a^{4}-\frac{94\!\cdots\!07}{42\!\cdots\!76}a^{3}-\frac{52\!\cdots\!77}{28\!\cdots\!84}a^{2}+\frac{38\!\cdots\!95}{23\!\cdots\!32}a-\frac{35\!\cdots\!53}{78\!\cdots\!44}$, $\frac{89\!\cdots\!57}{30\!\cdots\!72}a^{25}-\frac{13\!\cdots\!39}{30\!\cdots\!72}a^{24}+\frac{22\!\cdots\!11}{14\!\cdots\!96}a^{23}+\frac{58\!\cdots\!97}{10\!\cdots\!24}a^{22}+\frac{14\!\cdots\!07}{15\!\cdots\!36}a^{21}-\frac{99\!\cdots\!17}{15\!\cdots\!36}a^{20}-\frac{71\!\cdots\!05}{27\!\cdots\!52}a^{19}+\frac{79\!\cdots\!43}{30\!\cdots\!72}a^{18}+\frac{73\!\cdots\!01}{15\!\cdots\!88}a^{17}+\frac{11\!\cdots\!53}{70\!\cdots\!04}a^{16}+\frac{19\!\cdots\!85}{75\!\cdots\!68}a^{15}+\frac{67\!\cdots\!85}{37\!\cdots\!84}a^{14}-\frac{15\!\cdots\!13}{30\!\cdots\!72}a^{13}+\frac{46\!\cdots\!19}{30\!\cdots\!72}a^{12}+\frac{45\!\cdots\!83}{30\!\cdots\!72}a^{11}+\frac{23\!\cdots\!35}{64\!\cdots\!76}a^{10}+\frac{29\!\cdots\!61}{50\!\cdots\!12}a^{9}+\frac{46\!\cdots\!21}{65\!\cdots\!56}a^{8}+\frac{13\!\cdots\!61}{15\!\cdots\!88}a^{7}-\frac{19\!\cdots\!57}{27\!\cdots\!52}a^{6}+\frac{18\!\cdots\!81}{14\!\cdots\!32}a^{5}+\frac{14\!\cdots\!57}{16\!\cdots\!48}a^{4}-\frac{56\!\cdots\!87}{46\!\cdots\!64}a^{3}-\frac{40\!\cdots\!79}{93\!\cdots\!28}a^{2}+\frac{71\!\cdots\!55}{26\!\cdots\!48}a-\frac{23\!\cdots\!65}{37\!\cdots\!64}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 733568072447875.4 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 733568072447875.4 \cdot 78}{2\cdot\sqrt{858374143948696578292647084480714777491390439882752}}\cr\approx \mathstrut & 23.2276355425139 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 2*x^25 + 6*x^24 + 192*x^23 + 229*x^22 - 2372*x^21 - 7609*x^20 + 13316*x^19 + 151094*x^18 + 450746*x^17 + 611459*x^16 + 157196*x^15 - 479713*x^14 + 608030*x^13 + 4854322*x^12 + 9743644*x^11 + 13689711*x^10 + 13728588*x^9 - 9234035*x^8 - 25518536*x^7 + 16531986*x^6 + 27343458*x^5 - 19132335*x^4 - 12522276*x^3 + 16740756*x^2 - 6858432*x + 1084752);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{26}$ (as 26T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 52
The 16 conjugacy class representatives for $D_{26}$
Character table for $D_{26}$

Intermediate fields

\(\Q(\sqrt{-53}) \), 13.1.2012196471835550329409536.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 26 sibling: 26.2.214593535987174144573161771120178694372847609970688.1
Minimal sibling: 26.2.214593535987174144573161771120178694372847609970688.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.2.0.1}{2} }^{12}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ $26$ ${\href{/padicField/7.2.0.1}{2} }^{13}$ ${\href{/padicField/11.2.0.1}{2} }^{13}$ ${\href{/padicField/13.13.0.1}{13} }^{2}$ ${\href{/padicField/17.13.0.1}{13} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{12}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{12}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{12}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/43.2.0.1}{2} }^{13}$ ${\href{/padicField/47.2.0.1}{2} }^{13}$ R ${\href{/padicField/59.2.0.1}{2} }^{13}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 6 x^{3} + 17 x^{2} + 24 x + 13$$2$$2$$4$$C_2^2$$[2]^{2}$
\(53\) Copy content Toggle raw display Deg $26$$26$$1$$25$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.53.2t1.a.a$1$ $ 53 $ \(\Q(\sqrt{53}) \) $C_2$ (as 2T1) $1$ $1$
1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.212.2t1.a.a$1$ $ 2^{2} \cdot 53 $ \(\Q(\sqrt{-53}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.11236.26t3.a.b$2$ $ 2^{2} \cdot 53^{2}$ 26.0.858374143948696578292647084480714777491390439882752.2 $D_{26}$ (as 26T3) $1$ $0$
* 2.11236.13t2.a.d$2$ $ 2^{2} \cdot 53^{2}$ 13.1.2012196471835550329409536.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.11236.13t2.a.f$2$ $ 2^{2} \cdot 53^{2}$ 13.1.2012196471835550329409536.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.11236.26t3.a.a$2$ $ 2^{2} \cdot 53^{2}$ 26.0.858374143948696578292647084480714777491390439882752.2 $D_{26}$ (as 26T3) $1$ $0$
* 2.11236.26t3.a.d$2$ $ 2^{2} \cdot 53^{2}$ 26.0.858374143948696578292647084480714777491390439882752.2 $D_{26}$ (as 26T3) $1$ $0$
* 2.11236.26t3.a.e$2$ $ 2^{2} \cdot 53^{2}$ 26.0.858374143948696578292647084480714777491390439882752.2 $D_{26}$ (as 26T3) $1$ $0$
* 2.11236.26t3.a.c$2$ $ 2^{2} \cdot 53^{2}$ 26.0.858374143948696578292647084480714777491390439882752.2 $D_{26}$ (as 26T3) $1$ $0$
* 2.11236.13t2.a.e$2$ $ 2^{2} \cdot 53^{2}$ 13.1.2012196471835550329409536.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.11236.13t2.a.a$2$ $ 2^{2} \cdot 53^{2}$ 13.1.2012196471835550329409536.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.11236.13t2.a.c$2$ $ 2^{2} \cdot 53^{2}$ 13.1.2012196471835550329409536.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.11236.26t3.a.f$2$ $ 2^{2} \cdot 53^{2}$ 26.0.858374143948696578292647084480714777491390439882752.2 $D_{26}$ (as 26T3) $1$ $0$
* 2.11236.13t2.a.b$2$ $ 2^{2} \cdot 53^{2}$ 13.1.2012196471835550329409536.1 $D_{13}$ (as 13T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.