Normalized defining polynomial
\( x^{26} + 53 x^{24} + 1166 x^{22} + 13939 x^{20} + 99640 x^{18} + 442444 x^{16} + 1229759 x^{14} + 2105054 x^{12} + 2133568 x^{10} + 1209089 x^{8} + 365117 x^{6} + 53318 x^{4} + 2968 x^{2} + 53 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-858374143948696578292647084480714777491390439882752=-\,2^{26}\cdot 53^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(212=2^{2}\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{212}(123,·)$, $\chi_{212}(1,·)$, $\chi_{212}(131,·)$, $\chi_{212}(69,·)$, $\chi_{212}(7,·)$, $\chi_{212}(201,·)$, $\chi_{212}(11,·)$, $\chi_{212}(13,·)$, $\chi_{212}(77,·)$, $\chi_{212}(143,·)$, $\chi_{212}(81,·)$, $\chi_{212}(205,·)$, $\chi_{212}(211,·)$, $\chi_{212}(89,·)$, $\chi_{212}(153,·)$, $\chi_{212}(91,·)$, $\chi_{212}(135,·)$, $\chi_{212}(199,·)$, $\chi_{212}(97,·)$, $\chi_{212}(163,·)$, $\chi_{212}(169,·)$, $\chi_{212}(43,·)$, $\chi_{212}(49,·)$, $\chi_{212}(115,·)$, $\chi_{212}(121,·)$, $\chi_{212}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} - \frac{11}{23} a^{12} + \frac{5}{23} a^{10} - \frac{7}{23} a^{8} + \frac{9}{23} a^{6} - \frac{11}{23} a^{4} + \frac{9}{23} a^{2} - \frac{1}{23}$, $\frac{1}{23} a^{15} - \frac{11}{23} a^{13} + \frac{5}{23} a^{11} - \frac{7}{23} a^{9} + \frac{9}{23} a^{7} - \frac{11}{23} a^{5} + \frac{9}{23} a^{3} - \frac{1}{23} a$, $\frac{1}{23} a^{16} - \frac{1}{23} a^{12} + \frac{2}{23} a^{10} + \frac{1}{23} a^{8} - \frac{4}{23} a^{6} + \frac{3}{23} a^{4} + \frac{6}{23} a^{2} - \frac{11}{23}$, $\frac{1}{23} a^{17} - \frac{1}{23} a^{13} + \frac{2}{23} a^{11} + \frac{1}{23} a^{9} - \frac{4}{23} a^{7} + \frac{3}{23} a^{5} + \frac{6}{23} a^{3} - \frac{11}{23} a$, $\frac{1}{23} a^{18} - \frac{9}{23} a^{12} + \frac{6}{23} a^{10} - \frac{11}{23} a^{8} - \frac{11}{23} a^{6} - \frac{5}{23} a^{4} - \frac{2}{23} a^{2} - \frac{1}{23}$, $\frac{1}{23} a^{19} - \frac{9}{23} a^{13} + \frac{6}{23} a^{11} - \frac{11}{23} a^{9} - \frac{11}{23} a^{7} - \frac{5}{23} a^{5} - \frac{2}{23} a^{3} - \frac{1}{23} a$, $\frac{1}{23} a^{20} - \frac{1}{23} a^{12} + \frac{11}{23} a^{10} - \frac{5}{23} a^{8} + \frac{7}{23} a^{6} - \frac{9}{23} a^{4} + \frac{11}{23} a^{2} - \frac{9}{23}$, $\frac{1}{23} a^{21} - \frac{1}{23} a^{13} + \frac{11}{23} a^{11} - \frac{5}{23} a^{9} + \frac{7}{23} a^{7} - \frac{9}{23} a^{5} + \frac{11}{23} a^{3} - \frac{9}{23} a$, $\frac{1}{23} a^{22} - \frac{1}{23}$, $\frac{1}{23} a^{23} - \frac{1}{23} a$, $\frac{1}{953877272718409223} a^{24} - \frac{5951976017765939}{953877272718409223} a^{22} + \frac{3400273862401490}{953877272718409223} a^{20} + \frac{9619312240139629}{953877272718409223} a^{18} - \frac{3891034132342681}{953877272718409223} a^{16} + \frac{6025801841851293}{953877272718409223} a^{14} - \frac{316074545567462860}{953877272718409223} a^{12} - \frac{348293703142197190}{953877272718409223} a^{10} - \frac{124477184844099589}{953877272718409223} a^{8} - \frac{139786812110216495}{953877272718409223} a^{6} - \frac{48544943583040178}{953877272718409223} a^{4} - \frac{228842787930625108}{953877272718409223} a^{2} + \frac{119300292076422685}{953877272718409223}$, $\frac{1}{953877272718409223} a^{25} - \frac{5951976017765939}{953877272718409223} a^{23} + \frac{3400273862401490}{953877272718409223} a^{21} + \frac{9619312240139629}{953877272718409223} a^{19} - \frac{3891034132342681}{953877272718409223} a^{17} + \frac{6025801841851293}{953877272718409223} a^{15} - \frac{316074545567462860}{953877272718409223} a^{13} - \frac{348293703142197190}{953877272718409223} a^{11} - \frac{124477184844099589}{953877272718409223} a^{9} - \frac{139786812110216495}{953877272718409223} a^{7} - \frac{48544943583040178}{953877272718409223} a^{5} - \frac{228842787930625108}{953877272718409223} a^{3} + \frac{119300292076422685}{953877272718409223} a$
Class group and class number
$C_{195474}$, which has order $195474$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5382739421.971964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-53}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | R | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 53 | Data not computed | ||||||