Properties

Label 26.0.858...752.1
Degree $26$
Signature $[0, 13]$
Discriminant $-8.584\times 10^{50}$
Root discriminant \(90.99\)
Ramified primes $2,53$
Class number $195474$ (GRH)
Class group [195474] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53)
 
gp: K = bnfinit(y^26 + 53*y^24 + 1166*y^22 + 13939*y^20 + 99640*y^18 + 442444*y^16 + 1229759*y^14 + 2105054*y^12 + 2133568*y^10 + 1209089*y^8 + 365117*y^6 + 53318*y^4 + 2968*y^2 + 53, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53)
 

\( x^{26} + 53 x^{24} + 1166 x^{22} + 13939 x^{20} + 99640 x^{18} + 442444 x^{16} + 1229759 x^{14} + \cdots + 53 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-858374143948696578292647084480714777491390439882752\) \(\medspace = -\,2^{26}\cdot 53^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(90.99\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 53^{25/26}\approx 90.98872147271963$
Ramified primes:   \(2\), \(53\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-53}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(212=2^{2}\cdot 53\)
Dirichlet character group:    $\lbrace$$\chi_{212}(123,·)$, $\chi_{212}(1,·)$, $\chi_{212}(131,·)$, $\chi_{212}(69,·)$, $\chi_{212}(7,·)$, $\chi_{212}(201,·)$, $\chi_{212}(11,·)$, $\chi_{212}(13,·)$, $\chi_{212}(77,·)$, $\chi_{212}(143,·)$, $\chi_{212}(81,·)$, $\chi_{212}(205,·)$, $\chi_{212}(211,·)$, $\chi_{212}(89,·)$, $\chi_{212}(153,·)$, $\chi_{212}(91,·)$, $\chi_{212}(135,·)$, $\chi_{212}(199,·)$, $\chi_{212}(97,·)$, $\chi_{212}(163,·)$, $\chi_{212}(169,·)$, $\chi_{212}(43,·)$, $\chi_{212}(49,·)$, $\chi_{212}(115,·)$, $\chi_{212}(121,·)$, $\chi_{212}(59,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23}a^{14}-\frac{11}{23}a^{12}+\frac{5}{23}a^{10}-\frac{7}{23}a^{8}+\frac{9}{23}a^{6}-\frac{11}{23}a^{4}+\frac{9}{23}a^{2}-\frac{1}{23}$, $\frac{1}{23}a^{15}-\frac{11}{23}a^{13}+\frac{5}{23}a^{11}-\frac{7}{23}a^{9}+\frac{9}{23}a^{7}-\frac{11}{23}a^{5}+\frac{9}{23}a^{3}-\frac{1}{23}a$, $\frac{1}{23}a^{16}-\frac{1}{23}a^{12}+\frac{2}{23}a^{10}+\frac{1}{23}a^{8}-\frac{4}{23}a^{6}+\frac{3}{23}a^{4}+\frac{6}{23}a^{2}-\frac{11}{23}$, $\frac{1}{23}a^{17}-\frac{1}{23}a^{13}+\frac{2}{23}a^{11}+\frac{1}{23}a^{9}-\frac{4}{23}a^{7}+\frac{3}{23}a^{5}+\frac{6}{23}a^{3}-\frac{11}{23}a$, $\frac{1}{23}a^{18}-\frac{9}{23}a^{12}+\frac{6}{23}a^{10}-\frac{11}{23}a^{8}-\frac{11}{23}a^{6}-\frac{5}{23}a^{4}-\frac{2}{23}a^{2}-\frac{1}{23}$, $\frac{1}{23}a^{19}-\frac{9}{23}a^{13}+\frac{6}{23}a^{11}-\frac{11}{23}a^{9}-\frac{11}{23}a^{7}-\frac{5}{23}a^{5}-\frac{2}{23}a^{3}-\frac{1}{23}a$, $\frac{1}{23}a^{20}-\frac{1}{23}a^{12}+\frac{11}{23}a^{10}-\frac{5}{23}a^{8}+\frac{7}{23}a^{6}-\frac{9}{23}a^{4}+\frac{11}{23}a^{2}-\frac{9}{23}$, $\frac{1}{23}a^{21}-\frac{1}{23}a^{13}+\frac{11}{23}a^{11}-\frac{5}{23}a^{9}+\frac{7}{23}a^{7}-\frac{9}{23}a^{5}+\frac{11}{23}a^{3}-\frac{9}{23}a$, $\frac{1}{23}a^{22}-\frac{1}{23}$, $\frac{1}{23}a^{23}-\frac{1}{23}a$, $\frac{1}{95\!\cdots\!23}a^{24}-\frac{59\!\cdots\!39}{95\!\cdots\!23}a^{22}+\frac{34\!\cdots\!90}{95\!\cdots\!23}a^{20}+\frac{96\!\cdots\!29}{95\!\cdots\!23}a^{18}-\frac{38\!\cdots\!81}{95\!\cdots\!23}a^{16}+\frac{60\!\cdots\!93}{95\!\cdots\!23}a^{14}-\frac{31\!\cdots\!60}{95\!\cdots\!23}a^{12}-\frac{34\!\cdots\!90}{95\!\cdots\!23}a^{10}-\frac{12\!\cdots\!89}{95\!\cdots\!23}a^{8}-\frac{13\!\cdots\!95}{95\!\cdots\!23}a^{6}-\frac{48\!\cdots\!78}{95\!\cdots\!23}a^{4}-\frac{22\!\cdots\!08}{95\!\cdots\!23}a^{2}+\frac{11\!\cdots\!85}{95\!\cdots\!23}$, $\frac{1}{95\!\cdots\!23}a^{25}-\frac{59\!\cdots\!39}{95\!\cdots\!23}a^{23}+\frac{34\!\cdots\!90}{95\!\cdots\!23}a^{21}+\frac{96\!\cdots\!29}{95\!\cdots\!23}a^{19}-\frac{38\!\cdots\!81}{95\!\cdots\!23}a^{17}+\frac{60\!\cdots\!93}{95\!\cdots\!23}a^{15}-\frac{31\!\cdots\!60}{95\!\cdots\!23}a^{13}-\frac{34\!\cdots\!90}{95\!\cdots\!23}a^{11}-\frac{12\!\cdots\!89}{95\!\cdots\!23}a^{9}-\frac{13\!\cdots\!95}{95\!\cdots\!23}a^{7}-\frac{48\!\cdots\!78}{95\!\cdots\!23}a^{5}-\frac{22\!\cdots\!08}{95\!\cdots\!23}a^{3}+\frac{11\!\cdots\!85}{95\!\cdots\!23}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $23$

Class group and class number

$C_{195474}$, which has order $195474$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{49\!\cdots\!06}{95\!\cdots\!23}a^{24}+\frac{26\!\cdots\!80}{95\!\cdots\!23}a^{22}+\frac{56\!\cdots\!68}{95\!\cdots\!23}a^{20}+\frac{67\!\cdots\!52}{95\!\cdots\!23}a^{18}+\frac{47\!\cdots\!59}{95\!\cdots\!23}a^{16}+\frac{20\!\cdots\!94}{95\!\cdots\!23}a^{14}+\frac{54\!\cdots\!62}{95\!\cdots\!23}a^{12}+\frac{88\!\cdots\!30}{95\!\cdots\!23}a^{10}+\frac{79\!\cdots\!60}{95\!\cdots\!23}a^{8}+\frac{36\!\cdots\!78}{95\!\cdots\!23}a^{6}+\frac{75\!\cdots\!50}{95\!\cdots\!23}a^{4}+\frac{54\!\cdots\!44}{95\!\cdots\!23}a^{2}+\frac{10\!\cdots\!60}{95\!\cdots\!23}$, $\frac{79\!\cdots\!39}{95\!\cdots\!23}a^{24}+\frac{41\!\cdots\!37}{95\!\cdots\!23}a^{22}+\frac{90\!\cdots\!35}{95\!\cdots\!23}a^{20}+\frac{10\!\cdots\!79}{95\!\cdots\!23}a^{18}+\frac{74\!\cdots\!05}{95\!\cdots\!23}a^{16}+\frac{31\!\cdots\!73}{95\!\cdots\!23}a^{14}+\frac{83\!\cdots\!82}{95\!\cdots\!23}a^{12}+\frac{13\!\cdots\!20}{95\!\cdots\!23}a^{10}+\frac{11\!\cdots\!25}{95\!\cdots\!23}a^{8}+\frac{43\!\cdots\!05}{95\!\cdots\!23}a^{6}+\frac{54\!\cdots\!31}{95\!\cdots\!23}a^{4}-\frac{39\!\cdots\!39}{95\!\cdots\!23}a^{2}-\frac{42\!\cdots\!58}{95\!\cdots\!23}$, $\frac{58\!\cdots\!01}{95\!\cdots\!23}a^{24}+\frac{30\!\cdots\!13}{95\!\cdots\!23}a^{22}+\frac{66\!\cdots\!53}{95\!\cdots\!23}a^{20}+\frac{78\!\cdots\!83}{95\!\cdots\!23}a^{18}+\frac{55\!\cdots\!38}{95\!\cdots\!23}a^{16}+\frac{23\!\cdots\!31}{95\!\cdots\!23}a^{14}+\frac{63\!\cdots\!62}{95\!\cdots\!23}a^{12}+\frac{10\!\cdots\!60}{95\!\cdots\!23}a^{10}+\frac{92\!\cdots\!03}{95\!\cdots\!23}a^{8}+\frac{42\!\cdots\!62}{95\!\cdots\!23}a^{6}+\frac{88\!\cdots\!39}{95\!\cdots\!23}a^{4}+\frac{71\!\cdots\!24}{95\!\cdots\!23}a^{2}+\frac{16\!\cdots\!94}{95\!\cdots\!23}$, $\frac{10\!\cdots\!72}{95\!\cdots\!23}a^{24}+\frac{56\!\cdots\!36}{95\!\cdots\!23}a^{22}+\frac{12\!\cdots\!16}{95\!\cdots\!23}a^{20}+\frac{14\!\cdots\!36}{95\!\cdots\!23}a^{18}+\frac{98\!\cdots\!81}{95\!\cdots\!23}a^{16}+\frac{41\!\cdots\!64}{95\!\cdots\!23}a^{14}+\frac{10\!\cdots\!99}{95\!\cdots\!23}a^{12}+\frac{15\!\cdots\!52}{95\!\cdots\!23}a^{10}+\frac{11\!\cdots\!08}{95\!\cdots\!23}a^{8}+\frac{28\!\cdots\!75}{95\!\cdots\!23}a^{6}-\frac{46\!\cdots\!29}{95\!\cdots\!23}a^{4}-\frac{22\!\cdots\!77}{95\!\cdots\!23}a^{2}-\frac{10\!\cdots\!46}{95\!\cdots\!23}$, $\frac{45\!\cdots\!84}{95\!\cdots\!23}a^{24}+\frac{24\!\cdots\!51}{95\!\cdots\!23}a^{22}+\frac{53\!\cdots\!81}{95\!\cdots\!23}a^{20}+\frac{63\!\cdots\!21}{95\!\cdots\!23}a^{18}+\frac{45\!\cdots\!89}{95\!\cdots\!23}a^{16}+\frac{20\!\cdots\!13}{95\!\cdots\!23}a^{14}+\frac{57\!\cdots\!57}{95\!\cdots\!23}a^{12}+\frac{98\!\cdots\!52}{95\!\cdots\!23}a^{10}+\frac{10\!\cdots\!34}{95\!\cdots\!23}a^{8}+\frac{57\!\cdots\!73}{95\!\cdots\!23}a^{6}+\frac{17\!\cdots\!54}{95\!\cdots\!23}a^{4}+\frac{21\!\cdots\!97}{95\!\cdots\!23}a^{2}+\frac{43\!\cdots\!50}{95\!\cdots\!23}$, $\frac{40\!\cdots\!04}{95\!\cdots\!23}a^{24}+\frac{21\!\cdots\!18}{95\!\cdots\!23}a^{22}+\frac{46\!\cdots\!75}{95\!\cdots\!23}a^{20}+\frac{54\!\cdots\!29}{95\!\cdots\!23}a^{18}+\frac{38\!\cdots\!47}{95\!\cdots\!23}a^{16}+\frac{16\!\cdots\!81}{95\!\cdots\!23}a^{14}+\frac{43\!\cdots\!84}{95\!\cdots\!23}a^{12}+\frac{67\!\cdots\!35}{95\!\cdots\!23}a^{10}+\frac{58\!\cdots\!75}{95\!\cdots\!23}a^{8}+\frac{23\!\cdots\!84}{95\!\cdots\!23}a^{6}+\frac{37\!\cdots\!51}{95\!\cdots\!23}a^{4}+\frac{83\!\cdots\!86}{95\!\cdots\!23}a^{2}-\frac{17\!\cdots\!94}{95\!\cdots\!23}$, $\frac{27\!\cdots\!85}{95\!\cdots\!23}a^{24}+\frac{14\!\cdots\!76}{95\!\cdots\!23}a^{22}+\frac{31\!\cdots\!16}{95\!\cdots\!23}a^{20}+\frac{37\!\cdots\!56}{95\!\cdots\!23}a^{18}+\frac{26\!\cdots\!96}{95\!\cdots\!23}a^{16}+\frac{11\!\cdots\!13}{95\!\cdots\!23}a^{14}+\frac{29\!\cdots\!29}{95\!\cdots\!23}a^{12}+\frac{46\!\cdots\!31}{95\!\cdots\!23}a^{10}+\frac{40\!\cdots\!52}{95\!\cdots\!23}a^{8}+\frac{16\!\cdots\!27}{95\!\cdots\!23}a^{6}+\frac{26\!\cdots\!47}{95\!\cdots\!23}a^{4}+\frac{41\!\cdots\!10}{95\!\cdots\!23}a^{2}-\frac{24\!\cdots\!04}{95\!\cdots\!23}$, $\frac{30\!\cdots\!72}{41\!\cdots\!01}a^{24}+\frac{16\!\cdots\!50}{41\!\cdots\!01}a^{22}+\frac{35\!\cdots\!12}{41\!\cdots\!01}a^{20}+\frac{41\!\cdots\!56}{41\!\cdots\!01}a^{18}+\frac{29\!\cdots\!75}{41\!\cdots\!01}a^{16}+\frac{12\!\cdots\!25}{41\!\cdots\!01}a^{14}+\frac{33\!\cdots\!43}{41\!\cdots\!01}a^{12}+\frac{52\!\cdots\!38}{41\!\cdots\!01}a^{10}+\frac{46\!\cdots\!38}{41\!\cdots\!01}a^{8}+\frac{20\!\cdots\!95}{41\!\cdots\!01}a^{6}+\frac{37\!\cdots\!52}{41\!\cdots\!01}a^{4}+\frac{19\!\cdots\!63}{41\!\cdots\!01}a^{2}+\frac{30\!\cdots\!05}{41\!\cdots\!01}$, $\frac{32\!\cdots\!16}{95\!\cdots\!23}a^{24}+\frac{16\!\cdots\!08}{95\!\cdots\!23}a^{22}+\frac{36\!\cdots\!48}{95\!\cdots\!23}a^{20}+\frac{42\!\cdots\!08}{95\!\cdots\!23}a^{18}+\frac{29\!\cdots\!43}{95\!\cdots\!23}a^{16}+\frac{12\!\cdots\!92}{95\!\cdots\!23}a^{14}+\frac{31\!\cdots\!97}{95\!\cdots\!23}a^{12}+\frac{45\!\cdots\!56}{95\!\cdots\!23}a^{10}+\frac{34\!\cdots\!24}{95\!\cdots\!23}a^{8}+\frac{84\!\cdots\!25}{95\!\cdots\!23}a^{6}-\frac{14\!\cdots\!87}{95\!\cdots\!23}a^{4}-\frac{68\!\cdots\!08}{95\!\cdots\!23}a^{2}-\frac{29\!\cdots\!69}{95\!\cdots\!23}$, $\frac{40\!\cdots\!72}{95\!\cdots\!23}a^{24}+\frac{21\!\cdots\!97}{95\!\cdots\!23}a^{22}+\frac{47\!\cdots\!31}{95\!\cdots\!23}a^{20}+\frac{55\!\cdots\!59}{95\!\cdots\!23}a^{18}+\frac{39\!\cdots\!83}{95\!\cdots\!23}a^{16}+\frac{17\!\cdots\!35}{95\!\cdots\!23}a^{14}+\frac{46\!\cdots\!15}{95\!\cdots\!23}a^{12}+\frac{75\!\cdots\!08}{95\!\cdots\!23}a^{10}+\frac{71\!\cdots\!34}{95\!\cdots\!23}a^{8}+\frac{34\!\cdots\!31}{95\!\cdots\!23}a^{6}+\frac{83\!\cdots\!31}{95\!\cdots\!23}a^{4}+\frac{81\!\cdots\!59}{95\!\cdots\!23}a^{2}+\frac{18\!\cdots\!83}{95\!\cdots\!23}$, $\frac{16\!\cdots\!76}{95\!\cdots\!23}a^{24}+\frac{87\!\cdots\!26}{95\!\cdots\!23}a^{22}+\frac{18\!\cdots\!25}{95\!\cdots\!23}a^{20}+\frac{22\!\cdots\!71}{95\!\cdots\!23}a^{18}+\frac{15\!\cdots\!01}{95\!\cdots\!23}a^{16}+\frac{64\!\cdots\!11}{95\!\cdots\!23}a^{14}+\frac{16\!\cdots\!84}{95\!\cdots\!23}a^{12}+\frac{24\!\cdots\!29}{95\!\cdots\!23}a^{10}+\frac{18\!\cdots\!40}{95\!\cdots\!23}a^{8}+\frac{52\!\cdots\!40}{95\!\cdots\!23}a^{6}-\frac{36\!\cdots\!31}{95\!\cdots\!23}a^{4}-\frac{29\!\cdots\!06}{95\!\cdots\!23}a^{2}-\frac{12\!\cdots\!51}{95\!\cdots\!23}$, $\frac{24\!\cdots\!28}{95\!\cdots\!23}a^{24}+\frac{12\!\cdots\!92}{95\!\cdots\!23}a^{22}+\frac{27\!\cdots\!50}{95\!\cdots\!23}a^{20}+\frac{32\!\cdots\!58}{95\!\cdots\!23}a^{18}+\frac{23\!\cdots\!46}{95\!\cdots\!23}a^{16}+\frac{10\!\cdots\!70}{95\!\cdots\!23}a^{14}+\frac{26\!\cdots\!00}{95\!\cdots\!23}a^{12}+\frac{43\!\cdots\!06}{95\!\cdots\!23}a^{10}+\frac{39\!\cdots\!35}{95\!\cdots\!23}a^{8}+\frac{18\!\cdots\!44}{95\!\cdots\!23}a^{6}+\frac{41\!\cdots\!82}{95\!\cdots\!23}a^{4}+\frac{38\!\cdots\!92}{95\!\cdots\!23}a^{2}+\frac{11\!\cdots\!80}{95\!\cdots\!23}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5382739421.971964 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 5382739421.971964 \cdot 195474}{2\cdot\sqrt{858374143948696578292647084480714777491390439882752}}\cr\approx \mathstrut & 0.427132222587746 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 53*x^24 + 1166*x^22 + 13939*x^20 + 99640*x^18 + 442444*x^16 + 1229759*x^14 + 2105054*x^12 + 2133568*x^10 + 1209089*x^8 + 365117*x^6 + 53318*x^4 + 2968*x^2 + 53);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-53}) \), 13.13.491258904256726154641.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.13.0.1}{13} }^{2}$ $26$ $26$ $26$ ${\href{/padicField/13.13.0.1}{13} }^{2}$ ${\href{/padicField/17.13.0.1}{13} }^{2}$ ${\href{/padicField/19.13.0.1}{13} }^{2}$ ${\href{/padicField/23.1.0.1}{1} }^{26}$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ ${\href{/padicField/31.13.0.1}{13} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ $26$ $26$ R $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $26$$2$$13$$26$
\(53\) Copy content Toggle raw display Deg $26$$26$$1$$25$