Normalized defining polynomial
\( x^{26} - x^{25} + 3 x^{24} - 11 x^{23} + 44 x^{22} + 444 x^{21} + 172 x^{20} - 1660 x^{19} - 4713 x^{18} - 12939 x^{17} + 26193 x^{16} + 35200 x^{15} - 140905 x^{14} + 424503 x^{13} + 143672 x^{12} - 1088095 x^{11} + 163498 x^{10} - 410278 x^{9} + 3177833 x^{8} - 3344770 x^{7} + 4162585 x^{6} - 2783945 x^{5} + 3599581 x^{4} - 4829444 x^{3} + 1868225 x^{2} + 472321 x + 4461913 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-85463837848355618843993505004759251339989023133673251=-\,131^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(131\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{131}(1,·)$, $\chi_{131}(130,·)$, $\chi_{131}(68,·)$, $\chi_{131}(69,·)$, $\chi_{131}(71,·)$, $\chi_{131}(79,·)$, $\chi_{131}(80,·)$, $\chi_{131}(18,·)$, $\chi_{131}(19,·)$, $\chi_{131}(84,·)$, $\chi_{131}(86,·)$, $\chi_{131}(24,·)$, $\chi_{131}(92,·)$, $\chi_{131}(32,·)$, $\chi_{131}(99,·)$, $\chi_{131}(39,·)$, $\chi_{131}(107,·)$, $\chi_{131}(45,·)$, $\chi_{131}(47,·)$, $\chi_{131}(112,·)$, $\chi_{131}(113,·)$, $\chi_{131}(51,·)$, $\chi_{131}(52,·)$, $\chi_{131}(60,·)$, $\chi_{131}(62,·)$, $\chi_{131}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{89} a^{21} + \frac{40}{89} a^{20} - \frac{36}{89} a^{19} + \frac{31}{89} a^{18} + \frac{7}{89} a^{17} - \frac{18}{89} a^{16} + \frac{13}{89} a^{15} - \frac{5}{89} a^{14} + \frac{22}{89} a^{13} - \frac{24}{89} a^{12} + \frac{44}{89} a^{11} + \frac{35}{89} a^{10} - \frac{20}{89} a^{9} + \frac{30}{89} a^{8} + \frac{14}{89} a^{7} - \frac{41}{89} a^{6} - \frac{5}{89} a^{5} - \frac{21}{89} a^{4} - \frac{2}{89} a^{3} + \frac{10}{89} a^{2} + \frac{10}{89} a - \frac{32}{89}$, $\frac{1}{89} a^{22} - \frac{34}{89} a^{20} - \frac{42}{89} a^{19} + \frac{13}{89} a^{18} - \frac{31}{89} a^{17} + \frac{21}{89} a^{16} + \frac{9}{89} a^{15} + \frac{44}{89} a^{14} - \frac{14}{89} a^{13} + \frac{25}{89} a^{12} - \frac{34}{89} a^{11} + \frac{4}{89} a^{10} + \frac{29}{89} a^{9} - \frac{29}{89} a^{8} + \frac{22}{89} a^{7} + \frac{33}{89} a^{6} + \frac{1}{89} a^{5} + \frac{37}{89} a^{4} + \frac{1}{89} a^{3} - \frac{34}{89} a^{2} + \frac{13}{89} a + \frac{34}{89}$, $\frac{1}{287737} a^{23} + \frac{1093}{287737} a^{22} + \frac{529}{287737} a^{21} + \frac{2938}{287737} a^{20} + \frac{56036}{287737} a^{19} + \frac{30474}{287737} a^{18} + \frac{126808}{287737} a^{17} - \frac{71544}{287737} a^{16} - \frac{2825}{287737} a^{15} + \frac{79617}{287737} a^{14} + \frac{25411}{287737} a^{13} - \frac{88838}{287737} a^{12} - \frac{50389}{287737} a^{11} + \frac{138382}{287737} a^{10} + \frac{113947}{287737} a^{9} + \frac{33364}{287737} a^{8} - \frac{51699}{287737} a^{7} - \frac{71563}{287737} a^{6} + \frac{125496}{287737} a^{5} + \frac{109876}{287737} a^{4} + \frac{90624}{287737} a^{3} + \frac{432}{287737} a^{2} - \frac{110512}{287737} a - \frac{15386}{287737}$, $\frac{1}{287737} a^{24} - \frac{1143}{287737} a^{22} + \frac{215}{287737} a^{21} + \frac{19608}{287737} a^{20} + \frac{32311}{287737} a^{19} - \frac{120616}{287737} a^{18} - \frac{135405}{287737} a^{17} - \frac{50299}{287737} a^{16} + \frac{92759}{287737} a^{15} + \frac{23458}{287737} a^{14} + \frac{34496}{287737} a^{13} - \frac{18047}{287737} a^{12} - \frac{22246}{287737} a^{11} + \frac{92462}{287737} a^{10} - \frac{140430}{287737} a^{9} - \frac{43845}{287737} a^{8} + \frac{100419}{287737} a^{7} + \frac{27663}{287737} a^{6} - \frac{52411}{287737} a^{5} + \frac{98873}{287737} a^{4} - \frac{28043}{287737} a^{3} + \frac{2485}{287737} a^{2} - \frac{104407}{287737} a + \frac{118453}{287737}$, $\frac{1}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{25} - \frac{830336118910176547974896943481024020797143984452104209275792799008211334073325875}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{24} - \frac{1040116654196085023778025074489759777851153529798379848763418606851245486476197016}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{23} + \frac{110499240603326547332169129543623846620452606725396469661987831509074399727814349233}{29856193517504457330916796573210200384342778112417370913815524578222872367446671217223} a^{22} - \frac{3534921753616895957746736737782538700508700842487218870693634778127187484942303694427}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{21} + \frac{322622592716428249525163795612010984792599820070786482628536451209121430099626510795680}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{20} + \frac{673772882677606494714141236960939931199089442321546710083979293953845343382790365669542}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{19} - \frac{322418973640401738678883482386201398037573653697883812081602255472569716411986144090040}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{18} - \frac{767650876464099465520480387536209388138692169915966600669441229799327700093238981807990}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{17} - \frac{283171544982565953709137682547982492588258687572630051166323898867612818588555230191942}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{16} - \frac{677102188986653336996530712688291902973924917471037589786664480532222402473615819598656}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{15} + \frac{405163668414011024616487828130735074551998183286976850586202649757156688031374864190126}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{14} - \frac{681965262105319699742932454593262607657444231336245861263943201455201549770510673820113}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{13} + \frac{14312074953919946228483924327742231953186644364451005800623691747365563885521358248228}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{12} - \frac{587652649351326966378374201292007110984193297161961074266956875130810840272849383995500}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{11} + \frac{228442824194248902404407550271863691516777368325287264351598421195921140499441236728783}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{10} - \frac{688560577868228366843066407948867804989039601528676786620572282219415056750326246440058}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{9} - \frac{620266157712702662119117241416542824042642737018581753012941500015677555907964221488032}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{8} + \frac{20481660829403521846278207193469275205364269451501095211250541969859462866697671333132}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{7} - \frac{616769151923867251064156578102745901355224866609521742279089489804828185201576092226813}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{6} - \frac{765113862545824097129448507974889572448444974773886152810608183575406597357451761602828}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{5} - \frac{276933321088833388370406330099776138692187821237367356280338205594956071177875006262542}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{4} + \frac{785948314035410867072039876897910213109600743559079222020427444573593847222553985219075}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{3} - \frac{196334676936740903247795974730043804576270558720318149305792562645944208696050175310343}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a^{2} + \frac{208612945965109222998506986116553413744047130793139596800494760924170947902585213557738}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819} a + \frac{448563092173536161928247211797240664391676292844424371124720776692476558298731425449855}{1582378256427736238538590218380140620370167239958120658432222802645812235474673574512819}$
Class group and class number
$C_{3}\times C_{3}\times C_{795}$, which has order $7155$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1197545162478.713 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-131}) \), 13.13.25542038069936263923006961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 131 | Data not computed | ||||||