Normalized defining polynomial
\( x^{26} - 11 x^{25} + 45 x^{24} - 60 x^{23} + 34 x^{22} - 984 x^{21} + 6796 x^{20} - 23643 x^{19} + 68365 x^{18} - 206429 x^{17} + 699117 x^{16} - 2159628 x^{15} + 6343892 x^{14} - 16258486 x^{13} + 41351964 x^{12} - 94709797 x^{11} + 223682928 x^{10} - 466972712 x^{9} + 1004077677 x^{8} - 1819021316 x^{7} + 3357872176 x^{6} - 4894096774 x^{5} + 7375230728 x^{4} - 7821265802 x^{3} + 9149067838 x^{2} - 5536163135 x + 4569738463 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8331549472216739873971116493728468253329428095507981211=-\,11^{13}\cdot 53^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(583=11\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{583}(384,·)$, $\chi_{583}(1,·)$, $\chi_{583}(386,·)$, $\chi_{583}(331,·)$, $\chi_{583}(452,·)$, $\chi_{583}(10,·)$, $\chi_{583}(395,·)$, $\chi_{583}(142,·)$, $\chi_{583}(208,·)$, $\chi_{583}(342,·)$, $\chi_{583}(89,·)$, $\chi_{583}(153,·)$, $\chi_{583}(155,·)$, $\chi_{583}(540,·)$, $\chi_{583}(417,·)$, $\chi_{583}(100,·)$, $\chi_{583}(362,·)$, $\chi_{583}(364,·)$, $\chi_{583}(175,·)$, $\chi_{583}(307,·)$, $\chi_{583}(309,·)$, $\chi_{583}(54,·)$, $\chi_{583}(439,·)$, $\chi_{583}(505,·)$, $\chi_{583}(122,·)$, $\chi_{583}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} - \frac{9}{23} a^{16} - \frac{1}{23} a^{15} - \frac{8}{23} a^{14} - \frac{11}{23} a^{13} - \frac{5}{23} a^{12} + \frac{4}{23} a^{11} - \frac{7}{23} a^{10} + \frac{10}{23} a^{9} + \frac{9}{23} a^{8} - \frac{6}{23} a^{7} - \frac{9}{23} a^{6} + \frac{10}{23} a^{5} - \frac{9}{23} a^{4} + \frac{8}{23} a^{3} + \frac{3}{23} a^{2} - \frac{3}{23} a$, $\frac{1}{23} a^{18} + \frac{10}{23} a^{16} + \frac{6}{23} a^{15} + \frac{9}{23} a^{14} + \frac{11}{23} a^{13} + \frac{5}{23} a^{12} + \frac{6}{23} a^{11} - \frac{7}{23} a^{10} + \frac{7}{23} a^{9} + \frac{6}{23} a^{8} + \frac{6}{23} a^{7} - \frac{2}{23} a^{6} - \frac{11}{23} a^{5} - \frac{4}{23} a^{4} + \frac{6}{23} a^{3} + \frac{1}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{23} a^{19} + \frac{4}{23} a^{16} - \frac{4}{23} a^{15} - \frac{1}{23} a^{14} + \frac{10}{23} a^{12} - \frac{1}{23} a^{11} + \frac{8}{23} a^{10} - \frac{2}{23} a^{9} + \frac{8}{23} a^{8} - \frac{11}{23} a^{7} + \frac{10}{23} a^{6} + \frac{11}{23} a^{5} + \frac{4}{23} a^{4} - \frac{10}{23} a^{3} - \frac{11}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{23} a^{20} + \frac{9}{23} a^{16} + \frac{3}{23} a^{15} + \frac{9}{23} a^{14} + \frac{8}{23} a^{13} - \frac{4}{23} a^{12} - \frac{8}{23} a^{11} + \frac{3}{23} a^{10} - \frac{9}{23} a^{9} - \frac{1}{23} a^{8} + \frac{11}{23} a^{7} + \frac{1}{23} a^{6} + \frac{10}{23} a^{5} + \frac{3}{23} a^{4} + \frac{3}{23} a^{3} - \frac{5}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{23} a^{21} - \frac{8}{23} a^{16} - \frac{5}{23} a^{15} + \frac{11}{23} a^{14} + \frac{3}{23} a^{13} - \frac{9}{23} a^{12} - \frac{10}{23} a^{11} + \frac{8}{23} a^{10} + \frac{1}{23} a^{9} - \frac{1}{23} a^{8} + \frac{9}{23} a^{7} - \frac{1}{23} a^{6} + \frac{5}{23} a^{5} - \frac{8}{23} a^{4} - \frac{8}{23} a^{3} + \frac{8}{23} a^{2} + \frac{4}{23} a$, $\frac{1}{23} a^{22} - \frac{8}{23} a^{16} + \frac{3}{23} a^{15} + \frac{8}{23} a^{14} - \frac{5}{23} a^{13} - \frac{4}{23} a^{12} - \frac{6}{23} a^{11} - \frac{9}{23} a^{10} + \frac{10}{23} a^{9} - \frac{11}{23} a^{8} - \frac{3}{23} a^{7} + \frac{2}{23} a^{6} + \frac{3}{23} a^{5} - \frac{11}{23} a^{4} + \frac{3}{23} a^{3} + \frac{5}{23} a^{2} - \frac{1}{23} a$, $\frac{1}{16537} a^{23} - \frac{191}{16537} a^{22} + \frac{237}{16537} a^{21} + \frac{275}{16537} a^{20} + \frac{170}{16537} a^{19} - \frac{10}{719} a^{18} + \frac{218}{16537} a^{17} + \frac{1032}{16537} a^{16} - \frac{4062}{16537} a^{15} + \frac{2192}{16537} a^{14} + \frac{1284}{16537} a^{13} - \frac{1169}{16537} a^{12} + \frac{3488}{16537} a^{11} - \frac{3799}{16537} a^{10} + \frac{5374}{16537} a^{9} - \frac{3231}{16537} a^{8} + \frac{41}{719} a^{7} + \frac{5489}{16537} a^{6} - \frac{8205}{16537} a^{5} + \frac{6257}{16537} a^{4} - \frac{4544}{16537} a^{3} - \frac{3076}{16537} a^{2} - \frac{4019}{16537} a + \frac{342}{719}$, $\frac{1}{435105007} a^{24} - \frac{1057}{435105007} a^{23} + \frac{8232104}{435105007} a^{22} + \frac{5451406}{435105007} a^{21} + \frac{165379}{435105007} a^{20} - \frac{3142804}{435105007} a^{19} + \frac{217961}{18917609} a^{18} - \frac{1414370}{435105007} a^{17} - \frac{201544071}{435105007} a^{16} + \frac{71082157}{435105007} a^{15} - \frac{135126250}{435105007} a^{14} - \frac{124111724}{435105007} a^{13} + \frac{61291769}{435105007} a^{12} + \frac{99698404}{435105007} a^{11} - \frac{64406451}{435105007} a^{10} + \frac{181276285}{435105007} a^{9} + \frac{96660844}{435105007} a^{8} + \frac{108653006}{435105007} a^{7} + \frac{69935950}{435105007} a^{6} + \frac{204238579}{435105007} a^{5} - \frac{16289353}{435105007} a^{4} - \frac{214247084}{435105007} a^{3} + \frac{52110460}{435105007} a^{2} + \frac{204964343}{435105007} a + \frac{4007762}{18917609}$, $\frac{1}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{25} - \frac{319182743172443362033130336881748783209782477641590792349534113161895254195620621478693}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{24} + \frac{3109555799349931120232588962952867584576856266953112667445808886256704559594685312966734928}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{23} - \frac{11476676979445366611036052028078646143457046009374131523575692305454959851143248959278182631759}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{22} + \frac{6853901823947665482351156803464147707693535564513668764550137756772381377878616968225632133446}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{21} + \frac{9511537420353229170153053408644961316415883707033998125254238844732966613662984658496001780572}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{20} + \frac{8522073811868994794736734803434266326310696884599551311176409419315800311282035851360992580885}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{19} - \frac{11008210862899506630492658462338518299363238824644964591909800674957984847842310699568755021994}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{18} - \frac{501893375265498107955976803419633871903992794714083527931993831562438774106741025272887203043}{23838853616142596257487659630266166921047344888605488557402914040049298657306290581771323573891} a^{17} + \frac{188291704633449880138574352295618144620689968135011945179312768542602397199569128424773875515550}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{16} - \frac{164976584892238028456512472982684666278594926792201192830636244071374561259589995894055103326980}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{15} - \frac{88599888078802478410187033921969692143478068118297757269703932599715447449464540637913461291965}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{14} - \frac{121880221563466804079151431699009701427063245648341093069235222532976214526336697700700253054069}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{13} - \frac{81941318271658608571458668496131201727945701354398952948919292818474994546686453576129244680158}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{12} - \frac{249383017418352786772522592061053429461113148923679743231296981207693363076888158150127193016695}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{11} + \frac{234906305989263046597176384147253828329952555540654967027898876067049673005303954655683760637370}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{10} - \frac{209515848779099754033182658546322636730145809803884062189254443692886878565461436750503140611989}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{9} - \frac{97716521427489870539061009004835078212155916080169524631792950154850823044542628939329328299359}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{8} - \frac{1121073026060671750122592918449987125960429865091436014424948881296961114742459009654570364302}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{7} + \frac{11061511801650860558681468460025843260242993546563838922442353246185814672470204281124715075628}{23838853616142596257487659630266166921047344888605488557402914040049298657306290581771323573891} a^{6} + \frac{213468302573303362750604511183498598921250321911925026974683218983525567747801167805195240411433}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{5} - \frac{220125319915873732414402963608251889916144867614651706537315796466324708688478066142409000230800}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{4} + \frac{51240627549225975503782271682917750590699813429490132540151736239972864874025985043610305491766}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{3} + \frac{138029568234854447502698016752915264644031258965867694444324810974649310813369068514094719614862}{548293633171279713922216171496121839184088932437926236820267022921133869118044683380740442199493} a^{2} - \frac{5318030137288119934605120486171553462199434277074716446041158701283359859295925322430888960629}{23838853616142596257487659630266166921047344888605488557402914040049298657306290581771323573891} a + \frac{333485127903861786471416838552965212637906794022510596437930992165078636418121628328909346036}{1036471896354025924238593896968094213958580212548064719887083219132578202491577851381361894517}$
Class group and class number
$C_{3}\times C_{3}\times C_{1605201}$, which has order $14446809$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5382739421.971964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | R | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | R | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| $53$ | 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |
| 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ | |