Properties

Label 26.0.55670676951...7363.1
Degree $26$
Signature $[0, 13]$
Discriminant $-\,3^{13}\cdot 79^{24}$
Root discriminant $97.77$
Ramified primes $3, 79$
Class number $57473$ (GRH)
Class group $[57473]$ (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![85849, -643428, 4701993, -4606662, 15390312, -18788771, 35389248, -37639084, 49613581, -47702921, 48531861, -37166826, 27024309, -15101678, 8121237, -3470974, 1528709, -526339, 196206, -51633, 16642, -3235, 1008, -118, 37, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 37*x^24 - 118*x^23 + 1008*x^22 - 3235*x^21 + 16642*x^20 - 51633*x^19 + 196206*x^18 - 526339*x^17 + 1528709*x^16 - 3470974*x^15 + 8121237*x^14 - 15101678*x^13 + 27024309*x^12 - 37166826*x^11 + 48531861*x^10 - 47702921*x^9 + 49613581*x^8 - 37639084*x^7 + 35389248*x^6 - 18788771*x^5 + 15390312*x^4 - 4606662*x^3 + 4701993*x^2 - 643428*x + 85849)
 
gp: K = bnfinit(x^26 - x^25 + 37*x^24 - 118*x^23 + 1008*x^22 - 3235*x^21 + 16642*x^20 - 51633*x^19 + 196206*x^18 - 526339*x^17 + 1528709*x^16 - 3470974*x^15 + 8121237*x^14 - 15101678*x^13 + 27024309*x^12 - 37166826*x^11 + 48531861*x^10 - 47702921*x^9 + 49613581*x^8 - 37639084*x^7 + 35389248*x^6 - 18788771*x^5 + 15390312*x^4 - 4606662*x^3 + 4701993*x^2 - 643428*x + 85849, 1)
 

Normalized defining polynomial

\( x^{26} - x^{25} + 37 x^{24} - 118 x^{23} + 1008 x^{22} - 3235 x^{21} + 16642 x^{20} - 51633 x^{19} + 196206 x^{18} - 526339 x^{17} + 1528709 x^{16} - 3470974 x^{15} + 8121237 x^{14} - 15101678 x^{13} + 27024309 x^{12} - 37166826 x^{11} + 48531861 x^{10} - 47702921 x^{9} + 49613581 x^{8} - 37639084 x^{7} + 35389248 x^{6} - 18788771 x^{5} + 15390312 x^{4} - 4606662 x^{3} + 4701993 x^{2} - 643428 x + 85849 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $26$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 13]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-5567067695110660347277981181082226208360544116097363=-\,3^{13}\cdot 79^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $97.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 79$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(237=3\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{237}(64,·)$, $\chi_{237}(1,·)$, $\chi_{237}(131,·)$, $\chi_{237}(196,·)$, $\chi_{237}(65,·)$, $\chi_{237}(8,·)$, $\chi_{237}(10,·)$, $\chi_{237}(143,·)$, $\chi_{237}(80,·)$, $\chi_{237}(146,·)$, $\chi_{237}(67,·)$, $\chi_{237}(22,·)$, $\chi_{237}(89,·)$, $\chi_{237}(220,·)$, $\chi_{237}(223,·)$, $\chi_{237}(97,·)$, $\chi_{237}(100,·)$, $\chi_{237}(101,·)$, $\chi_{237}(38,·)$, $\chi_{237}(46,·)$, $\chi_{237}(176,·)$, $\chi_{237}(179,·)$, $\chi_{237}(52,·)$, $\chi_{237}(125,·)$, $\chi_{237}(62,·)$, $\chi_{237}(166,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{23} a^{20} - \frac{11}{23} a^{19} - \frac{7}{23} a^{18} + \frac{2}{23} a^{17} - \frac{11}{23} a^{16} + \frac{11}{23} a^{15} + \frac{6}{23} a^{14} - \frac{9}{23} a^{13} - \frac{10}{23} a^{12} - \frac{5}{23} a^{11} + \frac{10}{23} a^{10} + \frac{6}{23} a^{9} - \frac{9}{23} a^{8} - \frac{7}{23} a^{7} + \frac{11}{23} a^{6} + \frac{2}{23} a^{5} + \frac{6}{23} a^{4} - \frac{11}{23} a^{3} - \frac{5}{23} a^{2} - \frac{8}{23} a + \frac{6}{23}$, $\frac{1}{23} a^{21} + \frac{10}{23} a^{19} - \frac{6}{23} a^{18} + \frac{11}{23} a^{17} + \frac{5}{23} a^{16} - \frac{11}{23} a^{15} + \frac{11}{23} a^{14} + \frac{6}{23} a^{13} + \frac{1}{23} a^{11} + \frac{1}{23} a^{10} + \frac{11}{23} a^{9} + \frac{9}{23} a^{8} + \frac{3}{23} a^{7} + \frac{8}{23} a^{6} + \frac{5}{23} a^{5} + \frac{9}{23} a^{4} - \frac{11}{23} a^{3} + \frac{6}{23} a^{2} + \frac{10}{23} a - \frac{3}{23}$, $\frac{1}{23} a^{22} - \frac{11}{23} a^{19} - \frac{11}{23} a^{18} + \frac{8}{23} a^{17} + \frac{7}{23} a^{16} - \frac{7}{23} a^{15} - \frac{8}{23} a^{14} - \frac{2}{23} a^{13} + \frac{9}{23} a^{12} + \frac{5}{23} a^{11} + \frac{3}{23} a^{10} - \frac{5}{23} a^{9} + \frac{1}{23} a^{8} + \frac{9}{23} a^{7} + \frac{10}{23} a^{6} - \frac{11}{23} a^{5} - \frac{2}{23} a^{4} + \frac{1}{23} a^{3} - \frac{9}{23} a^{2} + \frac{8}{23} a + \frac{9}{23}$, $\frac{1}{428789} a^{23} - \frac{5069}{428789} a^{22} + \frac{8906}{428789} a^{21} - \frac{2061}{428789} a^{20} - \frac{117957}{428789} a^{19} - \frac{124539}{428789} a^{18} - \frac{35045}{428789} a^{17} + \frac{168026}{428789} a^{16} - \frac{102429}{428789} a^{15} - \frac{171887}{428789} a^{14} + \frac{157703}{428789} a^{13} + \frac{8136}{18643} a^{12} + \frac{204425}{428789} a^{11} + \frac{39296}{428789} a^{10} + \frac{91347}{428789} a^{9} + \frac{88070}{428789} a^{8} - \frac{179757}{428789} a^{7} - \frac{126778}{428789} a^{6} + \frac{190188}{428789} a^{5} - \frac{7532}{18643} a^{4} + \frac{26249}{428789} a^{3} + \frac{54161}{428789} a^{2} - \frac{176238}{428789} a + \frac{94462}{428789}$, $\frac{1}{226829381} a^{24} - \frac{172}{226829381} a^{23} + \frac{4213164}{226829381} a^{22} + \frac{4106104}{226829381} a^{21} - \frac{1858610}{226829381} a^{20} - \frac{47869979}{226829381} a^{19} + \frac{33616546}{226829381} a^{18} - \frac{4581589}{9862147} a^{17} + \frac{111770088}{226829381} a^{16} - \frac{1873298}{226829381} a^{15} + \frac{14662768}{226829381} a^{14} + \frac{74613943}{226829381} a^{13} - \frac{82731845}{226829381} a^{12} + \frac{58182867}{226829381} a^{11} + \frac{95505687}{226829381} a^{10} + \frac{90643238}{226829381} a^{9} - \frac{96218222}{226829381} a^{8} + \frac{86317315}{226829381} a^{7} + \frac{105801460}{226829381} a^{6} + \frac{31000145}{226829381} a^{5} + \frac{25263251}{226829381} a^{4} - \frac{90571594}{226829381} a^{3} - \frac{76881084}{226829381} a^{2} - \frac{109374321}{226829381} a + \frac{26296928}{226829381}$, $\frac{1}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{25} + \frac{5028663798190928254528323920936572584182730421797642648353564}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{24} - \frac{5434653987004154132623952505350183698315702147712834306868790608}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{23} + \frac{318197472441256836753020362878167400882060374350039664878918213148}{27458753166746220460456279498267102003093043285507133203113331064067} a^{22} - \frac{89172295766774851059824672145468410746853159869900697711356451658694}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{21} + \frac{94449048245117941852355170631684093869025745253987485613157410436300}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{20} + \frac{1899320740136436344805470928540974779806955814195038244027010200501926}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{19} - \frac{396087458497819336827905513861593729087823818500121558313149009777938}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{18} - \frac{1483796104834721733698746233505438041699316146812671190626186898588789}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{17} - \frac{46701144102496773509147559495115035687422013909564120907497860707576}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{16} - \frac{77016878389198076225514896114731634286808499467582650674785766305352}{216088448833959387101851590834188933154775688464208309120152735765049} a^{15} - \frac{943056410165870923319829573935699984321340129132480408054925644120555}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{14} - \frac{1718370952544416449922801099810467006121155899499387558937005488138274}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{13} + \frac{2016659838655940485263762863568968408054030925043247927180243093250843}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{12} - \frac{46285145085367410492753972208270692341521720389307185755073869684731}{216088448833959387101851590834188933154775688464208309120152735765049} a^{11} - \frac{1941966838676569509425823732968292537268964529062631078000734997137317}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{10} - \frac{111668386770699229751448684534340909430538867758413491535107859816359}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{9} + \frac{634981441447736744110235049039056222458520509185300759752867931821670}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{8} - \frac{368587450744057366517166518444708878834309563288865737220747696780087}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{7} + \frac{1796292615976580076137062033458352636289965547356300749880518507011697}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{6} - \frac{2092833474493745750954311974239731017396754771090460468897756559482172}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{5} + \frac{2343291326028156135756712671682988525232457641768199690460086394941000}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{4} + \frac{1202210273977095535591824423266761629803354423829264025525037271656856}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{3} - \frac{540068367185817302694686993260825844932075378850671857914166333213366}{4970034323181065903342586589186345462559840834676791109763512922596127} a^{2} + \frac{1995885664860806506326164508622745816281628883640993479309286529785190}{4970034323181065903342586589186345462559840834676791109763512922596127} a + \frac{1896651770403063920128459921086845598832055047492501558517552914462}{16962574481846641308336473000635991339794678616644338258578542397939}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{57473}$, which has order $57473$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{745437435626525585791097888709341304681484807006785254875549}{408484780404460089039416995905839193109216802389807767712954131881} a^{25} - \frac{800600851644091915550693456619893048232672919112354031509062}{408484780404460089039416995905839193109216802389807767712954131881} a^{24} + \frac{27633491585445404582125825140468867200147918128306953923210841}{408484780404460089039416995905839193109216802389807767712954131881} a^{23} - \frac{89932332821032303795495171336158580850423032047539225217894220}{408484780404460089039416995905839193109216802389807767712954131881} a^{22} + \frac{757736344994103711379521133711857773162434426200308472994013920}{408484780404460089039416995905839193109216802389807767712954131881} a^{21} - \frac{2464288908392365058113282363130840345871255333259680285988693784}{408484780404460089039416995905839193109216802389807767712954131881} a^{20} + \frac{12573204623928256474854921990373761147483149692735488756348734413}{408484780404460089039416995905839193109216802389807767712954131881} a^{19} - \frac{39330911361288242705889494852756800570596591189199619922913689537}{408484780404460089039416995905839193109216802389807767712954131881} a^{18} + \frac{148845080043023163759577860857899614387193792271760207280706212906}{408484780404460089039416995905839193109216802389807767712954131881} a^{17} - \frac{401933652602234683585264079828767046313057346437865059333368878931}{408484780404460089039416995905839193109216802389807767712954131881} a^{16} + \frac{1164644218294350376610152560579646099693911031526036638568843250948}{408484780404460089039416995905839193109216802389807767712954131881} a^{15} - \frac{2657455733490793958085602735923700346711360631808299696136786022297}{408484780404460089039416995905839193109216802389807767712954131881} a^{14} + \frac{6207029985588047906671405250161930715896574910644884226087144376576}{408484780404460089039416995905839193109216802389807767712954131881} a^{13} - \frac{11598064215401636134133795453151717443426255953600115214049227112301}{408484780404460089039416995905839193109216802389807767712954131881} a^{12} + \frac{20736838298104688526927598480458816125218529837050164805240642217353}{408484780404460089039416995905839193109216802389807767712954131881} a^{11} - \frac{28650958448430114553819787935661239455313835538399976808195141005716}{408484780404460089039416995905839193109216802389807767712954131881} a^{10} + \frac{37238537460543477723099146238779884229080542315073926124361974436810}{408484780404460089039416995905839193109216802389807767712954131881} a^{9} - \frac{36549407897392657125357430970714790943501781202717326421796785248527}{408484780404460089039416995905839193109216802389807767712954131881} a^{8} + \frac{37429046557079935182304712656079883099486240822683688346665522654115}{408484780404460089039416995905839193109216802389807767712954131881} a^{7} - \frac{28167755699276684561756024859865494506498191349179582440485315490428}{408484780404460089039416995905839193109216802389807767712954131881} a^{6} + \frac{26158145806174808843074478835580681763373827382739869584454294313980}{408484780404460089039416995905839193109216802389807767712954131881} a^{5} - \frac{13699740916400386158370648641827002546266938032398234891827527703172}{408484780404460089039416995905839193109216802389807767712954131881} a^{4} + \frac{10905024500702360702073152572174989223827794283152320479011396627999}{408484780404460089039416995905839193109216802389807767712954131881} a^{3} - \frac{2604055139933440516041199089854875479500442801564892131076838478333}{408484780404460089039416995905839193109216802389807767712954131881} a^{2} + \frac{3161861817590699445201304561941655417888284129745114459011791636626}{408484780404460089039416995905839193109216802389807767712954131881} a - \frac{78298508111038596112801991594433972609517842594379667909711265}{1394146008206348426755689405821976768290842328975453132126123317} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 57529828940.82975 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{26}$ (as 26T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 13.13.59091511031674153381441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $26$ R $26$ ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ $26$ ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ $26$ $26$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$79$79.13.12.1$x^{13} - 79$$13$$1$$12$$C_{13}$$[\ ]_{13}$
79.13.12.1$x^{13} - 79$$13$$1$$12$$C_{13}$$[\ ]_{13}$