Normalized defining polynomial
\( x^{26} - 2 x^{25} + 17 x^{24} - 98 x^{23} + 152 x^{22} - 696 x^{21} + 1597 x^{20} + 1896 x^{19} + 20067 x^{18} + 156392 x^{17} + 357813 x^{16} - 241572 x^{15} - 6441785 x^{14} - 21049242 x^{13} - 6337440 x^{12} + 144534568 x^{11} + 455484358 x^{10} + 307770160 x^{9} - 848362260 x^{8} - 452511774 x^{7} + 6860115833 x^{6} + 21793527372 x^{5} + 15854969370 x^{4} - 22167126630 x^{3} - 34371344111 x^{2} - 12604846614 x + 29070259637 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-4459331436230036418749915076130198106842162927\)\(\medspace = -\,17^{13}\cdot 191^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $56.98$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $17, 191$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{28} a^{17} - \frac{1}{28} a^{16} + \frac{1}{14} a^{15} + \frac{1}{28} a^{14} + \frac{3}{14} a^{12} - \frac{11}{28} a^{11} - \frac{1}{4} a^{10} - \frac{1}{28} a^{9} + \frac{5}{28} a^{8} - \frac{2}{7} a^{7} + \frac{3}{14} a^{6} + \frac{5}{28} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{14} a^{2} - \frac{9}{28} a - \frac{1}{28}$, $\frac{1}{28} a^{18} + \frac{1}{28} a^{16} + \frac{3}{28} a^{15} + \frac{1}{28} a^{14} - \frac{1}{28} a^{13} + \frac{1}{14} a^{12} + \frac{5}{14} a^{11} - \frac{1}{28} a^{10} - \frac{3}{28} a^{9} + \frac{1}{7} a^{8} + \frac{5}{28} a^{7} - \frac{3}{28} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{3} - \frac{11}{28} a^{2} + \frac{11}{28} a - \frac{2}{7}$, $\frac{1}{28} a^{19} - \frac{3}{28} a^{16} - \frac{1}{28} a^{15} - \frac{1}{14} a^{14} + \frac{1}{14} a^{13} - \frac{5}{14} a^{12} - \frac{11}{28} a^{11} - \frac{3}{28} a^{10} - \frac{9}{28} a^{9} - \frac{1}{4} a^{8} - \frac{9}{28} a^{7} - \frac{1}{28} a^{6} + \frac{1}{14} a^{5} - \frac{9}{28} a^{4} + \frac{5}{14} a^{3} - \frac{1}{28} a^{2} + \frac{2}{7} a - \frac{13}{28}$, $\frac{1}{28} a^{20} + \frac{3}{28} a^{16} - \frac{3}{28} a^{15} - \frac{1}{14} a^{14} - \frac{3}{28} a^{13} + \frac{1}{4} a^{12} - \frac{2}{7} a^{11} + \frac{5}{28} a^{10} - \frac{5}{14} a^{9} - \frac{2}{7} a^{8} + \frac{5}{14} a^{7} + \frac{13}{28} a^{6} - \frac{2}{7} a^{5} + \frac{3}{28} a^{4} - \frac{2}{7} a^{3} - \frac{5}{28} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{28} a^{21} - \frac{1}{28} a^{15} + \frac{1}{28} a^{14} - \frac{3}{7} a^{12} + \frac{3}{28} a^{11} + \frac{11}{28} a^{10} + \frac{9}{28} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{3}{7} a^{6} - \frac{5}{28} a^{5} - \frac{1}{28} a^{4} + \frac{1}{14} a^{3} - \frac{13}{28} a^{2} - \frac{1}{7} a + \frac{5}{14}$, $\frac{1}{532} a^{22} - \frac{1}{76} a^{21} + \frac{9}{532} a^{20} + \frac{2}{133} a^{19} - \frac{1}{76} a^{18} + \frac{3}{532} a^{17} + \frac{12}{133} a^{16} + \frac{1}{76} a^{15} - \frac{17}{532} a^{14} + \frac{13}{266} a^{13} - \frac{47}{266} a^{12} + \frac{29}{76} a^{11} - \frac{17}{133} a^{10} - \frac{127}{266} a^{9} + \frac{85}{532} a^{8} - \frac{1}{133} a^{7} + \frac{31}{532} a^{6} - \frac{13}{38} a^{5} + \frac{101}{266} a^{4} - \frac{31}{133} a^{3} - \frac{15}{76} a^{2} - \frac{41}{266} a - \frac{25}{266}$, $\frac{1}{3724} a^{23} + \frac{3}{3724} a^{22} - \frac{61}{3724} a^{21} - \frac{27}{1862} a^{20} + \frac{27}{1862} a^{19} + \frac{1}{133} a^{18} - \frac{55}{3724} a^{17} + \frac{449}{3724} a^{16} + \frac{207}{1862} a^{15} - \frac{239}{3724} a^{14} + \frac{223}{3724} a^{13} - \frac{5}{38} a^{12} + \frac{639}{1862} a^{11} + \frac{1327}{3724} a^{10} - \frac{1847}{3724} a^{9} + \frac{979}{3724} a^{8} - \frac{617}{3724} a^{7} + \frac{59}{532} a^{6} + \frac{157}{532} a^{5} - \frac{591}{1862} a^{4} + \frac{555}{3724} a^{3} - \frac{1531}{3724} a^{2} - \frac{15}{3724} a + \frac{160}{931}$, $\frac{1}{1269884} a^{24} + \frac{3}{90706} a^{23} - \frac{3}{4123} a^{22} + \frac{130}{16709} a^{21} - \frac{11155}{634942} a^{20} + \frac{5067}{1269884} a^{19} + \frac{3483}{634942} a^{18} - \frac{45}{33418} a^{17} + \frac{11175}{317471} a^{16} + \frac{28496}{317471} a^{15} + \frac{950}{16709} a^{14} + \frac{30827}{317471} a^{13} + \frac{11475}{634942} a^{12} + \frac{70355}{317471} a^{11} - \frac{7951}{33418} a^{10} - \frac{74169}{1269884} a^{9} + \frac{138993}{634942} a^{8} + \frac{83180}{317471} a^{7} - \frac{59965}{181412} a^{6} + \frac{31125}{66836} a^{5} + \frac{543325}{1269884} a^{4} + \frac{133061}{634942} a^{3} - \frac{417}{5852} a^{2} + \frac{196125}{1269884} a + \frac{351265}{1269884}$, $\frac{1}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{25} - \frac{2491722710280256002544074309615497265782782046416095453974224791627539949385322113171444112555307810692765503251529899}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{24} - \frac{504091359578123019661633215622760803922234551623782368069779301168576813582066599790653187759930291274108464678785026267}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{23} - \frac{1339586854104363768273122445308713914271986661127836338089913515064127427584181446886463175572561887383967511022042810243}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{22} - \frac{472363477979597840053149114155441308873989212565548767172843413222764223558737230565545789823525674979963432978437642947577}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{21} - \frac{55926180572127815192188222042748492868134392904377294996349504512421345682460434831129608426243473152424330619113343759680}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749} a^{20} - \frac{258276757545953246671565253493785317775918873786970361071737147639198774140501622100569719566848552283495222897141189823809}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{19} - \frac{70027965308874236462178076268606576167164290310491428876682159464047779371192588275029199053833176544168215150664779002457}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{18} - \frac{16676970278257755484679443260128785227908810704373407413656483386218322725542924068441787581025382984598831602978908264103}{14484321163431394558440023039981833426904852506353519214751298239815851536450827525655487695654910565492652128222027860941498} a^{17} + \frac{3173800515927744801784509943477986630094399437999946815436124116666155304119910348897097781940499582324994471509244716270685}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{16} + \frac{3310857887144385740763347072644089218153096300722299193704414215112806115015792857485496881905857932633137035779681689651535}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{15} - \frac{62771249253203294245036346338116901371742295654576512630644903359023899642994668171715902767395449060204573139022849050861}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{14} - \frac{1600342048570762472601040236385281460345075797339087724232579797787410377318838600808794596246455988610038426645960165172885}{14484321163431394558440023039981833426904852506353519214751298239815851536450827525655487695654910565492652128222027860941498} a^{13} - \frac{2547766235897505227961297778895798267207289969632393171616515994016175043962654123408100291275031186326685641911069605240697}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749} a^{12} + \frac{3491490493771456321964636644029278449608330929817579279462967752614372285253765042181378271650581154753100611436042965201087}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749} a^{11} - \frac{5760269436803548509401919424339659956180816179574337974418847476838660282360952225882712751943309804858787945193886113585}{188108067057550578681039260259504330219543539043552197594172704413192877096763993839681658385128708642761715950935426765474} a^{10} + \frac{1572693191590566079851658744787066733247520445923493517800405818768410607051622154150240491569646197984453992213528095104573}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749} a^{9} - \frac{46296445505742453034209906560777102990230663399234662203843676159103797727952715132348589171873916409512154654089498667719}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749} a^{8} + \frac{11980593618298748125457894896422073492027782829935073895956745209809173463755438243497563662052753958938691982056245388764133}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a^{7} + \frac{168061839104010147872057702904922544849640254113860121534661589333369778730041358403145294899612631790702700293009129478889}{467236166562303050272258807741349465384027500204952232733912846445672630208091210505015732117900340822343617039420253578758} a^{6} - \frac{307445184866913005860677394032407380113707231227262890817390497871085856573912744207034877969837284811136789519695606423511}{14484321163431394558440023039981833426904852506353519214751298239815851536450827525655487695654910565492652128222027860941498} a^{5} - \frac{804968627853538022004753196478716066702246210632069049312310399509196426809543138080375793925786908584580481778867347540464}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749} a^{4} - \frac{6882292213251634518638750594920930797223574649608410628563901640087279784793768022308657678795252408168622582915909376596143}{14484321163431394558440023039981833426904852506353519214751298239815851536450827525655487695654910565492652128222027860941498} a^{3} - \frac{1567779845707909031743706618061313588107642974783837855650798706104711205644232790596080844508433510885986763429943214538369}{4138377475266112730982863725709095264829957858958148347071799497090243296128807864472996484472831590140757750920579388840428} a^{2} + \frac{3938495404510776367681958170896468605404552168872215832787585802869687440260414816867067353531645899462346311511469617468451}{28968642326862789116880046079963666853809705012707038429502596479631703072901655051310975391309821130985304256444055721882996} a + \frac{3558217921619928379629572882550417832323699715213873978068247019374562181636375577055729595986000930267218654721499318771295}{7242160581715697279220011519990916713452426253176759607375649119907925768225413762827743847827455282746326064111013930470749}$
Class group and class number
not computed
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{-3247}) \), 13.1.48551226272641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{13}$ | $26$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
17 | Data not computed | ||||||
$191$ | 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |