Properties

Label 26.0.43781534893...8144.1
Degree $26$
Signature $[0, 13]$
Discriminant $-\,2^{26}\cdot 131^{24}$
Root discriminant $180.07$
Ramified primes $2, 131$
Class number $14586183$ (GRH)
Class group $[3, 3, 1620687]$ (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![245454889, 0, 1545040687, 0, 3883036579, 0, 5227349377, 0, 4256806366, 0, 2226843762, 0, 769764830, 0, 177180824, 0, 26945411, 0, 2652975, 0, 163895, 0, 6052, 0, 121, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889)
 
gp: K = bnfinit(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889, 1)
 

Normalized defining polynomial

\( x^{26} + 121 x^{24} + 6052 x^{22} + 163895 x^{20} + 2652975 x^{18} + 26945411 x^{16} + 177180824 x^{14} + 769764830 x^{12} + 2226843762 x^{10} + 4256806366 x^{8} + 5227349377 x^{6} + 3883036579 x^{4} + 1545040687 x^{2} + 245454889 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $26$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 13]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-43781534893766029378911430108761129396314054312752152838144=-\,2^{26}\cdot 131^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $180.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 131$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(524=2^{2}\cdot 131\)
Dirichlet character group:    $\lbrace$$\chi_{524}(1,·)$, $\chi_{524}(107,·)$, $\chi_{524}(325,·)$, $\chi_{524}(263,·)$, $\chi_{524}(375,·)$, $\chi_{524}(369,·)$, $\chi_{524}(45,·)$, $\chi_{524}(211,·)$, $\chi_{524}(215,·)$, $\chi_{524}(473,·)$, $\chi_{524}(477,·)$, $\chi_{524}(453,·)$, $\chi_{524}(99,·)$, $\chi_{524}(243,·)$, $\chi_{524}(39,·)$, $\chi_{524}(361,·)$, $\chi_{524}(193,·)$, $\chi_{524}(455,·)$, $\chi_{524}(301,·)$, $\chi_{524}(113,·)$, $\chi_{524}(307,·)$, $\chi_{524}(183,·)$, $\chi_{524}(505,·)$, $\chi_{524}(191,·)$, $\chi_{524}(445,·)$, $\chi_{524}(63,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{89} a^{18} + \frac{4}{89} a^{16} + \frac{25}{89} a^{14} + \frac{4}{89} a^{12} + \frac{9}{89} a^{10} - \frac{40}{89} a^{8} - \frac{20}{89} a^{6} - \frac{20}{89} a^{4} - \frac{43}{89} a^{2} + \frac{4}{89}$, $\frac{1}{89} a^{19} + \frac{4}{89} a^{17} + \frac{25}{89} a^{15} + \frac{4}{89} a^{13} + \frac{9}{89} a^{11} - \frac{40}{89} a^{9} - \frac{20}{89} a^{7} - \frac{20}{89} a^{5} - \frac{43}{89} a^{3} + \frac{4}{89} a$, $\frac{1}{4717} a^{20} + \frac{12}{4717} a^{18} + \frac{947}{4717} a^{16} + \frac{115}{4717} a^{14} - \frac{2095}{4717} a^{12} + \frac{9}{89} a^{10} - \frac{1675}{4717} a^{8} + \frac{443}{4717} a^{6} - \frac{292}{4717} a^{4} + \frac{2330}{4717} a^{2} + \frac{1278}{4717}$, $\frac{1}{4717} a^{21} + \frac{12}{4717} a^{19} + \frac{947}{4717} a^{17} + \frac{115}{4717} a^{15} - \frac{2095}{4717} a^{13} + \frac{9}{89} a^{11} - \frac{1675}{4717} a^{9} + \frac{443}{4717} a^{7} - \frac{292}{4717} a^{5} + \frac{2330}{4717} a^{3} + \frac{1278}{4717} a$, $\frac{1}{134302975889} a^{22} + \frac{10725326}{134302975889} a^{20} - \frac{389869598}{134302975889} a^{18} - \frac{5125378554}{134302975889} a^{16} - \frac{27434544643}{134302975889} a^{14} - \frac{18111369913}{134302975889} a^{12} + \frac{27517959732}{134302975889} a^{10} + \frac{38379855929}{134302975889} a^{8} + \frac{34447188688}{134302975889} a^{6} + \frac{1798184570}{134302975889} a^{4} - \frac{19598688248}{134302975889} a^{2} - \frac{33406148756}{134302975889}$, $\frac{1}{134302975889} a^{23} + \frac{10725326}{134302975889} a^{21} - \frac{389869598}{134302975889} a^{19} - \frac{5125378554}{134302975889} a^{17} - \frac{27434544643}{134302975889} a^{15} - \frac{18111369913}{134302975889} a^{13} + \frac{27517959732}{134302975889} a^{11} + \frac{38379855929}{134302975889} a^{9} + \frac{34447188688}{134302975889} a^{7} + \frac{1798184570}{134302975889} a^{5} - \frac{19598688248}{134302975889} a^{3} - \frac{33406148756}{134302975889} a$, $\frac{1}{1425627471973463772986698023553} a^{24} + \frac{3232303857148555705}{1425627471973463772986698023553} a^{22} + \frac{19160753344996581799132333}{1425627471973463772986698023553} a^{20} + \frac{641710145148298818066283253}{1425627471973463772986698023553} a^{18} + \frac{651901284260532630500674247742}{1425627471973463772986698023553} a^{16} - \frac{449011912628794719127063073436}{1425627471973463772986698023553} a^{14} + \frac{570711273754199691229943577705}{1425627471973463772986698023553} a^{12} + \frac{270067130765909534196540130985}{1425627471973463772986698023553} a^{10} + \frac{505509646503780085160219381636}{1425627471973463772986698023553} a^{8} - \frac{10430589350023176928267601432}{23370942163499406114536033173} a^{6} + \frac{224943672364730922848617230800}{1425627471973463772986698023553} a^{4} + \frac{365288603414150036918805164008}{1425627471973463772986698023553} a^{2} - \frac{362838502491920755215904647001}{1425627471973463772986698023553}$, $\frac{1}{22335305603408256931382597935004851} a^{25} + \frac{14853631709297502702528}{22335305603408256931382597935004851} a^{23} - \frac{84304307388778750744978965423}{22335305603408256931382597935004851} a^{21} - \frac{117027914949720802899339071317823}{22335305603408256931382597935004851} a^{19} + \frac{3781251986773911619968088982333129}{22335305603408256931382597935004851} a^{17} + \frac{1569356315592721731045988020180533}{22335305603408256931382597935004851} a^{15} - \frac{2728930294941109408045656968332000}{22335305603408256931382597935004851} a^{13} + \frac{8363491559858265546098822885707982}{22335305603408256931382597935004851} a^{11} + \frac{9757647898321579465879534103743420}{22335305603408256931382597935004851} a^{9} + \frac{96223681648919440292227408799125}{366152550875545195596436031721391} a^{7} + \frac{9412468735322836975233016717851900}{22335305603408256931382597935004851} a^{5} + \frac{273727903723511091280438036624297}{22335305603408256931382597935004851} a^{3} - \frac{2716563850157974871867864611858652}{22335305603408256931382597935004851} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{1620687}$, which has order $14586183$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{18742303651753981654}{5268580110437032626801293} a^{25} - \frac{2232702633907726946086}{5268580110437032626801293} a^{23} - \frac{109246311084833357631699}{5268580110437032626801293} a^{21} - \frac{2867217040610101824896010}{5268580110437032626801293} a^{19} - \frac{44357186238362705592131616}{5268580110437032626801293} a^{17} - \frac{422073619611879790622887207}{5268580110437032626801293} a^{15} - \frac{2532387269702891181856705091}{5268580110437032626801293} a^{13} - \frac{9704055717554598099271574919}{5268580110437032626801293} a^{11} - \frac{23673835294114779851195236185}{5268580110437032626801293} a^{9} - \frac{35836841376669367226742312082}{5268580110437032626801293} a^{7} - \frac{31694352450296996928587506755}{5268580110437032626801293} a^{5} - \frac{14463258486750102097348665865}{5268580110437032626801293} a^{3} - \frac{2543925526041780354828639082}{5268580110437032626801293} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1197545162478.713 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{26}$ (as 26T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 13.13.25542038069936263923006961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $26$ ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{26}$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
131Data not computed