Properties

Label 26.0.437...144.1
Degree $26$
Signature $[0, 13]$
Discriminant $-4.378\times 10^{58}$
Root discriminant \(180.07\)
Ramified primes $2,131$
Class number $14586183$ (GRH)
Class group [3, 3, 1620687] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889)
 
gp: K = bnfinit(y^26 + 121*y^24 + 6052*y^22 + 163895*y^20 + 2652975*y^18 + 26945411*y^16 + 177180824*y^14 + 769764830*y^12 + 2226843762*y^10 + 4256806366*y^8 + 5227349377*y^6 + 3883036579*y^4 + 1545040687*y^2 + 245454889, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889)
 

\( x^{26} + 121 x^{24} + 6052 x^{22} + 163895 x^{20} + 2652975 x^{18} + 26945411 x^{16} + 177180824 x^{14} + \cdots + 245454889 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-43781534893766029378911430108761129396314054312752152838144\) \(\medspace = -\,2^{26}\cdot 131^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(180.07\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 131^{12/13}\approx 180.06705783723962$
Ramified primes:   \(2\), \(131\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(524=2^{2}\cdot 131\)
Dirichlet character group:    $\lbrace$$\chi_{524}(1,·)$, $\chi_{524}(107,·)$, $\chi_{524}(325,·)$, $\chi_{524}(263,·)$, $\chi_{524}(375,·)$, $\chi_{524}(369,·)$, $\chi_{524}(45,·)$, $\chi_{524}(211,·)$, $\chi_{524}(215,·)$, $\chi_{524}(473,·)$, $\chi_{524}(477,·)$, $\chi_{524}(453,·)$, $\chi_{524}(99,·)$, $\chi_{524}(243,·)$, $\chi_{524}(39,·)$, $\chi_{524}(361,·)$, $\chi_{524}(193,·)$, $\chi_{524}(455,·)$, $\chi_{524}(301,·)$, $\chi_{524}(113,·)$, $\chi_{524}(307,·)$, $\chi_{524}(183,·)$, $\chi_{524}(505,·)$, $\chi_{524}(191,·)$, $\chi_{524}(445,·)$, $\chi_{524}(63,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{89}a^{18}+\frac{4}{89}a^{16}+\frac{25}{89}a^{14}+\frac{4}{89}a^{12}+\frac{9}{89}a^{10}-\frac{40}{89}a^{8}-\frac{20}{89}a^{6}-\frac{20}{89}a^{4}-\frac{43}{89}a^{2}+\frac{4}{89}$, $\frac{1}{89}a^{19}+\frac{4}{89}a^{17}+\frac{25}{89}a^{15}+\frac{4}{89}a^{13}+\frac{9}{89}a^{11}-\frac{40}{89}a^{9}-\frac{20}{89}a^{7}-\frac{20}{89}a^{5}-\frac{43}{89}a^{3}+\frac{4}{89}a$, $\frac{1}{4717}a^{20}+\frac{12}{4717}a^{18}+\frac{947}{4717}a^{16}+\frac{115}{4717}a^{14}-\frac{2095}{4717}a^{12}+\frac{9}{89}a^{10}-\frac{1675}{4717}a^{8}+\frac{443}{4717}a^{6}-\frac{292}{4717}a^{4}+\frac{2330}{4717}a^{2}+\frac{1278}{4717}$, $\frac{1}{4717}a^{21}+\frac{12}{4717}a^{19}+\frac{947}{4717}a^{17}+\frac{115}{4717}a^{15}-\frac{2095}{4717}a^{13}+\frac{9}{89}a^{11}-\frac{1675}{4717}a^{9}+\frac{443}{4717}a^{7}-\frac{292}{4717}a^{5}+\frac{2330}{4717}a^{3}+\frac{1278}{4717}a$, $\frac{1}{134302975889}a^{22}+\frac{10725326}{134302975889}a^{20}-\frac{389869598}{134302975889}a^{18}-\frac{5125378554}{134302975889}a^{16}-\frac{27434544643}{134302975889}a^{14}-\frac{18111369913}{134302975889}a^{12}+\frac{27517959732}{134302975889}a^{10}+\frac{38379855929}{134302975889}a^{8}+\frac{34447188688}{134302975889}a^{6}+\frac{1798184570}{134302975889}a^{4}-\frac{19598688248}{134302975889}a^{2}-\frac{33406148756}{134302975889}$, $\frac{1}{134302975889}a^{23}+\frac{10725326}{134302975889}a^{21}-\frac{389869598}{134302975889}a^{19}-\frac{5125378554}{134302975889}a^{17}-\frac{27434544643}{134302975889}a^{15}-\frac{18111369913}{134302975889}a^{13}+\frac{27517959732}{134302975889}a^{11}+\frac{38379855929}{134302975889}a^{9}+\frac{34447188688}{134302975889}a^{7}+\frac{1798184570}{134302975889}a^{5}-\frac{19598688248}{134302975889}a^{3}-\frac{33406148756}{134302975889}a$, $\frac{1}{14\!\cdots\!53}a^{24}+\frac{32\!\cdots\!05}{14\!\cdots\!53}a^{22}+\frac{19\!\cdots\!33}{14\!\cdots\!53}a^{20}+\frac{64\!\cdots\!53}{14\!\cdots\!53}a^{18}+\frac{65\!\cdots\!42}{14\!\cdots\!53}a^{16}-\frac{44\!\cdots\!36}{14\!\cdots\!53}a^{14}+\frac{57\!\cdots\!05}{14\!\cdots\!53}a^{12}+\frac{27\!\cdots\!85}{14\!\cdots\!53}a^{10}+\frac{50\!\cdots\!36}{14\!\cdots\!53}a^{8}-\frac{10\!\cdots\!32}{23\!\cdots\!73}a^{6}+\frac{22\!\cdots\!00}{14\!\cdots\!53}a^{4}+\frac{36\!\cdots\!08}{14\!\cdots\!53}a^{2}-\frac{36\!\cdots\!01}{14\!\cdots\!53}$, $\frac{1}{22\!\cdots\!51}a^{25}+\frac{14\!\cdots\!28}{22\!\cdots\!51}a^{23}-\frac{84\!\cdots\!23}{22\!\cdots\!51}a^{21}-\frac{11\!\cdots\!23}{22\!\cdots\!51}a^{19}+\frac{37\!\cdots\!29}{22\!\cdots\!51}a^{17}+\frac{15\!\cdots\!33}{22\!\cdots\!51}a^{15}-\frac{27\!\cdots\!00}{22\!\cdots\!51}a^{13}+\frac{83\!\cdots\!82}{22\!\cdots\!51}a^{11}+\frac{97\!\cdots\!20}{22\!\cdots\!51}a^{9}+\frac{96\!\cdots\!25}{36\!\cdots\!91}a^{7}+\frac{94\!\cdots\!00}{22\!\cdots\!51}a^{5}+\frac{27\!\cdots\!97}{22\!\cdots\!51}a^{3}-\frac{27\!\cdots\!52}{22\!\cdots\!51}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{3}\times C_{1620687}$, which has order $14586183$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{18742303651753981654}{5268580110437032626801293} a^{25} - \frac{2232702633907726946086}{5268580110437032626801293} a^{23} - \frac{109246311084833357631699}{5268580110437032626801293} a^{21} - \frac{2867217040610101824896010}{5268580110437032626801293} a^{19} - \frac{44357186238362705592131616}{5268580110437032626801293} a^{17} - \frac{422073619611879790622887207}{5268580110437032626801293} a^{15} - \frac{2532387269702891181856705091}{5268580110437032626801293} a^{13} - \frac{9704055717554598099271574919}{5268580110437032626801293} a^{11} - \frac{23673835294114779851195236185}{5268580110437032626801293} a^{9} - \frac{35836841376669367226742312082}{5268580110437032626801293} a^{7} - \frac{31694352450296996928587506755}{5268580110437032626801293} a^{5} - \frac{14463258486750102097348665865}{5268580110437032626801293} a^{3} - \frac{2543925526041780354828639082}{5268580110437032626801293} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{50\!\cdots\!83}{14\!\cdots\!53}a^{24}+\frac{60\!\cdots\!30}{14\!\cdots\!53}a^{22}+\frac{29\!\cdots\!78}{14\!\cdots\!53}a^{20}+\frac{78\!\cdots\!25}{14\!\cdots\!53}a^{18}+\frac{12\!\cdots\!79}{14\!\cdots\!53}a^{16}+\frac{11\!\cdots\!86}{14\!\cdots\!53}a^{14}+\frac{69\!\cdots\!08}{14\!\cdots\!53}a^{12}+\frac{26\!\cdots\!36}{14\!\cdots\!53}a^{10}+\frac{90\!\cdots\!81}{19\!\cdots\!61}a^{8}+\frac{16\!\cdots\!53}{23\!\cdots\!73}a^{6}+\frac{91\!\cdots\!61}{14\!\cdots\!53}a^{4}+\frac{43\!\cdots\!77}{14\!\cdots\!53}a^{2}+\frac{80\!\cdots\!53}{14\!\cdots\!53}$, $\frac{40\!\cdots\!90}{14\!\cdots\!53}a^{24}+\frac{42\!\cdots\!89}{14\!\cdots\!53}a^{22}+\frac{17\!\cdots\!40}{14\!\cdots\!53}a^{20}+\frac{33\!\cdots\!70}{14\!\cdots\!53}a^{18}+\frac{24\!\cdots\!72}{14\!\cdots\!53}a^{16}-\frac{14\!\cdots\!77}{14\!\cdots\!53}a^{14}-\frac{39\!\cdots\!05}{14\!\cdots\!53}a^{12}-\frac{41\!\cdots\!37}{19\!\cdots\!61}a^{10}-\frac{11\!\cdots\!66}{14\!\cdots\!53}a^{8}-\frac{43\!\cdots\!73}{23\!\cdots\!73}a^{6}-\frac{31\!\cdots\!12}{14\!\cdots\!53}a^{4}-\frac{18\!\cdots\!39}{14\!\cdots\!53}a^{2}-\frac{37\!\cdots\!93}{14\!\cdots\!53}$, $\frac{80\!\cdots\!17}{14\!\cdots\!53}a^{24}+\frac{95\!\cdots\!57}{14\!\cdots\!53}a^{22}+\frac{46\!\cdots\!17}{14\!\cdots\!53}a^{20}+\frac{12\!\cdots\!28}{14\!\cdots\!53}a^{18}+\frac{18\!\cdots\!42}{14\!\cdots\!53}a^{16}+\frac{18\!\cdots\!36}{14\!\cdots\!53}a^{14}+\frac{10\!\cdots\!58}{14\!\cdots\!53}a^{12}+\frac{41\!\cdots\!27}{14\!\cdots\!53}a^{10}+\frac{10\!\cdots\!94}{14\!\cdots\!53}a^{8}+\frac{24\!\cdots\!04}{23\!\cdots\!73}a^{6}+\frac{13\!\cdots\!33}{14\!\cdots\!53}a^{4}+\frac{59\!\cdots\!87}{14\!\cdots\!53}a^{2}+\frac{10\!\cdots\!22}{14\!\cdots\!53}$, $\frac{21\!\cdots\!68}{14\!\cdots\!53}a^{24}+\frac{25\!\cdots\!46}{14\!\cdots\!53}a^{22}+\frac{12\!\cdots\!30}{14\!\cdots\!53}a^{20}+\frac{32\!\cdots\!52}{14\!\cdots\!53}a^{18}+\frac{49\!\cdots\!59}{14\!\cdots\!53}a^{16}+\frac{45\!\cdots\!45}{14\!\cdots\!53}a^{14}+\frac{26\!\cdots\!98}{14\!\cdots\!53}a^{12}+\frac{96\!\cdots\!26}{14\!\cdots\!53}a^{10}+\frac{22\!\cdots\!06}{14\!\cdots\!53}a^{8}+\frac{52\!\cdots\!49}{23\!\cdots\!73}a^{6}+\frac{26\!\cdots\!35}{14\!\cdots\!53}a^{4}+\frac{11\!\cdots\!29}{14\!\cdots\!53}a^{2}+\frac{19\!\cdots\!24}{14\!\cdots\!53}$, $\frac{66\!\cdots\!70}{14\!\cdots\!53}a^{24}+\frac{79\!\cdots\!08}{14\!\cdots\!53}a^{22}+\frac{39\!\cdots\!91}{14\!\cdots\!53}a^{20}+\frac{10\!\cdots\!70}{14\!\cdots\!53}a^{18}+\frac{16\!\cdots\!15}{14\!\cdots\!53}a^{16}+\frac{15\!\cdots\!41}{14\!\cdots\!53}a^{14}+\frac{97\!\cdots\!04}{14\!\cdots\!53}a^{12}+\frac{38\!\cdots\!00}{14\!\cdots\!53}a^{10}+\frac{96\!\cdots\!93}{14\!\cdots\!53}a^{8}+\frac{24\!\cdots\!55}{23\!\cdots\!73}a^{6}+\frac{13\!\cdots\!76}{14\!\cdots\!53}a^{4}+\frac{63\!\cdots\!51}{14\!\cdots\!53}a^{2}+\frac{11\!\cdots\!77}{14\!\cdots\!53}$, $\frac{19\!\cdots\!84}{14\!\cdots\!53}a^{24}+\frac{22\!\cdots\!20}{14\!\cdots\!53}a^{22}+\frac{11\!\cdots\!53}{14\!\cdots\!53}a^{20}+\frac{29\!\cdots\!83}{14\!\cdots\!53}a^{18}+\frac{44\!\cdots\!33}{14\!\cdots\!53}a^{16}+\frac{42\!\cdots\!87}{14\!\cdots\!53}a^{14}+\frac{25\!\cdots\!00}{14\!\cdots\!53}a^{12}+\frac{95\!\cdots\!76}{14\!\cdots\!53}a^{10}+\frac{23\!\cdots\!88}{14\!\cdots\!53}a^{8}+\frac{56\!\cdots\!27}{23\!\cdots\!73}a^{6}+\frac{30\!\cdots\!67}{14\!\cdots\!53}a^{4}+\frac{13\!\cdots\!66}{14\!\cdots\!53}a^{2}+\frac{23\!\cdots\!69}{14\!\cdots\!53}$, $\frac{34\!\cdots\!78}{19\!\cdots\!61}a^{24}+\frac{29\!\cdots\!80}{14\!\cdots\!53}a^{22}+\frac{14\!\cdots\!45}{14\!\cdots\!53}a^{20}+\frac{38\!\cdots\!55}{14\!\cdots\!53}a^{18}+\frac{59\!\cdots\!97}{14\!\cdots\!53}a^{16}+\frac{57\!\cdots\!77}{14\!\cdots\!53}a^{14}+\frac{34\!\cdots\!15}{14\!\cdots\!53}a^{12}+\frac{13\!\cdots\!74}{14\!\cdots\!53}a^{10}+\frac{34\!\cdots\!61}{14\!\cdots\!53}a^{8}+\frac{87\!\cdots\!47}{23\!\cdots\!73}a^{6}+\frac{49\!\cdots\!16}{14\!\cdots\!53}a^{4}+\frac{23\!\cdots\!81}{14\!\cdots\!53}a^{2}+\frac{43\!\cdots\!72}{14\!\cdots\!53}$, $\frac{18\!\cdots\!25}{14\!\cdots\!53}a^{24}+\frac{21\!\cdots\!33}{14\!\cdots\!53}a^{22}+\frac{10\!\cdots\!03}{14\!\cdots\!53}a^{20}+\frac{27\!\cdots\!60}{14\!\cdots\!53}a^{18}+\frac{42\!\cdots\!40}{14\!\cdots\!53}a^{16}+\frac{40\!\cdots\!16}{14\!\cdots\!53}a^{14}+\frac{23\!\cdots\!38}{14\!\cdots\!53}a^{12}+\frac{90\!\cdots\!12}{14\!\cdots\!53}a^{10}+\frac{21\!\cdots\!89}{14\!\cdots\!53}a^{8}+\frac{53\!\cdots\!40}{23\!\cdots\!73}a^{6}+\frac{28\!\cdots\!73}{14\!\cdots\!53}a^{4}+\frac{17\!\cdots\!47}{19\!\cdots\!61}a^{2}+\frac{22\!\cdots\!43}{14\!\cdots\!53}$, $\frac{26\!\cdots\!76}{14\!\cdots\!53}a^{24}+\frac{32\!\cdots\!59}{14\!\cdots\!53}a^{22}+\frac{15\!\cdots\!95}{14\!\cdots\!53}a^{20}+\frac{56\!\cdots\!10}{19\!\cdots\!61}a^{18}+\frac{63\!\cdots\!31}{14\!\cdots\!53}a^{16}+\frac{60\!\cdots\!13}{14\!\cdots\!53}a^{14}+\frac{36\!\cdots\!09}{14\!\cdots\!53}a^{12}+\frac{13\!\cdots\!47}{14\!\cdots\!53}a^{10}+\frac{33\!\cdots\!88}{14\!\cdots\!53}a^{8}+\frac{82\!\cdots\!45}{23\!\cdots\!73}a^{6}+\frac{44\!\cdots\!88}{14\!\cdots\!53}a^{4}+\frac{19\!\cdots\!17}{14\!\cdots\!53}a^{2}+\frac{34\!\cdots\!86}{14\!\cdots\!53}$, $\frac{19\!\cdots\!65}{14\!\cdots\!53}a^{24}+\frac{23\!\cdots\!91}{14\!\cdots\!53}a^{22}+\frac{11\!\cdots\!57}{14\!\cdots\!53}a^{20}+\frac{30\!\cdots\!65}{14\!\cdots\!53}a^{18}+\frac{46\!\cdots\!34}{14\!\cdots\!53}a^{16}+\frac{44\!\cdots\!08}{14\!\cdots\!53}a^{14}+\frac{27\!\cdots\!99}{14\!\cdots\!53}a^{12}+\frac{10\!\cdots\!73}{14\!\cdots\!53}a^{10}+\frac{26\!\cdots\!27}{14\!\cdots\!53}a^{8}+\frac{65\!\cdots\!60}{23\!\cdots\!73}a^{6}+\frac{36\!\cdots\!01}{14\!\cdots\!53}a^{4}+\frac{16\!\cdots\!41}{14\!\cdots\!53}a^{2}+\frac{29\!\cdots\!57}{14\!\cdots\!53}$, $\frac{26\!\cdots\!06}{14\!\cdots\!53}a^{24}+\frac{34\!\cdots\!59}{14\!\cdots\!53}a^{22}+\frac{18\!\cdots\!49}{14\!\cdots\!53}a^{20}+\frac{54\!\cdots\!14}{14\!\cdots\!53}a^{18}+\frac{96\!\cdots\!25}{14\!\cdots\!53}a^{16}+\frac{10\!\cdots\!52}{14\!\cdots\!53}a^{14}+\frac{77\!\cdots\!42}{14\!\cdots\!53}a^{12}+\frac{35\!\cdots\!60}{14\!\cdots\!53}a^{10}+\frac{99\!\cdots\!37}{14\!\cdots\!53}a^{8}+\frac{28\!\cdots\!66}{23\!\cdots\!73}a^{6}+\frac{16\!\cdots\!58}{14\!\cdots\!53}a^{4}+\frac{82\!\cdots\!37}{14\!\cdots\!53}a^{2}+\frac{14\!\cdots\!43}{14\!\cdots\!53}$, $\frac{82\!\cdots\!24}{14\!\cdots\!53}a^{24}+\frac{98\!\cdots\!81}{14\!\cdots\!53}a^{22}+\frac{47\!\cdots\!04}{14\!\cdots\!53}a^{20}+\frac{12\!\cdots\!00}{14\!\cdots\!53}a^{18}+\frac{19\!\cdots\!37}{14\!\cdots\!53}a^{16}+\frac{17\!\cdots\!16}{14\!\cdots\!53}a^{14}+\frac{10\!\cdots\!44}{14\!\cdots\!53}a^{12}+\frac{39\!\cdots\!34}{14\!\cdots\!53}a^{10}+\frac{93\!\cdots\!50}{14\!\cdots\!53}a^{8}+\frac{22\!\cdots\!27}{23\!\cdots\!73}a^{6}+\frac{11\!\cdots\!55}{14\!\cdots\!53}a^{4}+\frac{50\!\cdots\!94}{14\!\cdots\!53}a^{2}+\frac{81\!\cdots\!20}{14\!\cdots\!53}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1197545162478.713 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 1197545162478.713 \cdot 14586183}{4\cdot\sqrt{43781534893766029378911430108761129396314054312752152838144}}\cr\approx \mathstrut & 0.496439540020851 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 121*x^24 + 6052*x^22 + 163895*x^20 + 2652975*x^18 + 26945411*x^16 + 177180824*x^14 + 769764830*x^12 + 2226843762*x^10 + 4256806366*x^8 + 5227349377*x^6 + 3883036579*x^4 + 1545040687*x^2 + 245454889);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 13.13.25542038069936263923006961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $26$ ${\href{/padicField/5.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/padicField/13.13.0.1}{13} }^{2}$ ${\href{/padicField/17.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ ${\href{/padicField/41.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/padicField/53.1.0.1}{1} }^{26}$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $26$$2$$13$$26$
\(131\) Copy content Toggle raw display Deg $26$$13$$2$$24$