Properties

Label 26.0.384...563.1
Degree $26$
Signature $[0, 13]$
Discriminant $-3.848\times 10^{47}$
Root discriminant \(67.64\)
Ramified primes $3,53$
Class number $2809$ (GRH)
Class group [53, 53] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1)
 
gp: K = bnfinit(y^26 - y^25 + 25*y^24 - 14*y^23 + 405*y^22 - 192*y^21 + 3603*y^20 - 1111*y^19 + 22650*y^18 - 5414*y^17 + 87624*y^16 - 5096*y^15 + 234451*y^14 - 19756*y^13 + 367484*y^12 - 30562*y^11 + 404986*y^10 - 57146*y^9 + 232119*y^8 - 34742*y^7 + 91429*y^6 - 16226*y^5 + 7319*y^4 + 98*y^3 + 168*y^2 - 10*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1)
 

\( x^{26} - x^{25} + 25 x^{24} - 14 x^{23} + 405 x^{22} - 192 x^{21} + 3603 x^{20} - 1111 x^{19} + 22650 x^{18} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-384766437057818380952237905666104641217782272563\) \(\medspace = -\,3^{13}\cdot 53^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(67.64\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}53^{12/13}\approx 67.63942259918862$
Ramified primes:   \(3\), \(53\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(159=3\cdot 53\)
Dirichlet character group:    $\lbrace$$\chi_{159}(1,·)$, $\chi_{159}(130,·)$, $\chi_{159}(68,·)$, $\chi_{159}(134,·)$, $\chi_{159}(10,·)$, $\chi_{159}(13,·)$, $\chi_{159}(142,·)$, $\chi_{159}(77,·)$, $\chi_{159}(16,·)$, $\chi_{159}(148,·)$, $\chi_{159}(152,·)$, $\chi_{159}(89,·)$, $\chi_{159}(155,·)$, $\chi_{159}(28,·)$, $\chi_{159}(95,·)$, $\chi_{159}(97,·)$, $\chi_{159}(100,·)$, $\chi_{159}(107,·)$, $\chi_{159}(44,·)$, $\chi_{159}(46,·)$, $\chi_{159}(47,·)$, $\chi_{159}(49,·)$, $\chi_{159}(116,·)$, $\chi_{159}(119,·)$, $\chi_{159}(121,·)$, $\chi_{159}(122,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{23}a^{22}-\frac{3}{23}a^{21}-\frac{8}{23}a^{20}+\frac{5}{23}a^{19}+\frac{8}{23}a^{18}-\frac{2}{23}a^{17}-\frac{10}{23}a^{16}-\frac{10}{23}a^{14}-\frac{10}{23}a^{13}+\frac{4}{23}a^{12}-\frac{9}{23}a^{11}-\frac{7}{23}a^{10}-\frac{7}{23}a^{9}-\frac{9}{23}a^{8}-\frac{2}{23}a^{7}+\frac{1}{23}a^{6}+\frac{3}{23}a^{5}+\frac{10}{23}a^{4}+\frac{2}{23}a^{3}-\frac{2}{23}a^{2}-\frac{1}{23}a+\frac{4}{23}$, $\frac{1}{23}a^{23}+\frac{6}{23}a^{21}+\frac{4}{23}a^{20}-\frac{1}{23}a^{18}+\frac{7}{23}a^{17}-\frac{7}{23}a^{16}-\frac{10}{23}a^{15}+\frac{6}{23}a^{14}-\frac{3}{23}a^{13}+\frac{3}{23}a^{12}-\frac{11}{23}a^{11}-\frac{5}{23}a^{10}-\frac{7}{23}a^{9}-\frac{6}{23}a^{8}-\frac{5}{23}a^{7}+\frac{6}{23}a^{6}-\frac{4}{23}a^{5}+\frac{9}{23}a^{4}+\frac{4}{23}a^{3}-\frac{7}{23}a^{2}+\frac{1}{23}a-\frac{11}{23}$, $\frac{1}{435105007}a^{24}-\frac{6511450}{435105007}a^{23}+\frac{6511474}{435105007}a^{22}-\frac{21353795}{435105007}a^{21}-\frac{29492337}{435105007}a^{20}+\frac{7684633}{435105007}a^{19}+\frac{170977751}{435105007}a^{18}+\frac{23875413}{435105007}a^{17}-\frac{175808914}{435105007}a^{16}+\frac{163443991}{435105007}a^{15}-\frac{35916163}{435105007}a^{14}-\frac{533332}{435105007}a^{13}-\frac{15687192}{435105007}a^{12}+\frac{138182201}{435105007}a^{11}-\frac{189374544}{435105007}a^{10}-\frac{197759169}{435105007}a^{9}-\frac{53900542}{435105007}a^{8}-\frac{11497280}{435105007}a^{7}-\frac{7263133}{18917609}a^{6}+\frac{179207798}{435105007}a^{5}+\frac{25522905}{435105007}a^{4}+\frac{11250547}{435105007}a^{3}+\frac{131851964}{435105007}a^{2}+\frac{183386491}{435105007}a+\frac{16110395}{435105007}$, $\frac{1}{13\!\cdots\!97}a^{25}-\frac{40\!\cdots\!66}{13\!\cdots\!97}a^{24}-\frac{69\!\cdots\!77}{13\!\cdots\!97}a^{23}+\frac{29\!\cdots\!07}{13\!\cdots\!97}a^{22}-\frac{13\!\cdots\!50}{13\!\cdots\!97}a^{21}-\frac{61\!\cdots\!30}{13\!\cdots\!97}a^{20}-\frac{67\!\cdots\!88}{13\!\cdots\!97}a^{19}-\frac{62\!\cdots\!16}{13\!\cdots\!97}a^{18}-\frac{37\!\cdots\!57}{13\!\cdots\!97}a^{17}+\frac{43\!\cdots\!21}{13\!\cdots\!97}a^{16}-\frac{67\!\cdots\!32}{13\!\cdots\!97}a^{15}-\frac{51\!\cdots\!25}{13\!\cdots\!97}a^{14}+\frac{38\!\cdots\!96}{13\!\cdots\!97}a^{13}+\frac{63\!\cdots\!81}{13\!\cdots\!97}a^{12}-\frac{19\!\cdots\!40}{13\!\cdots\!97}a^{11}+\frac{65\!\cdots\!72}{13\!\cdots\!97}a^{10}-\frac{30\!\cdots\!93}{16\!\cdots\!59}a^{9}+\frac{68\!\cdots\!40}{13\!\cdots\!97}a^{8}-\frac{66\!\cdots\!44}{13\!\cdots\!97}a^{7}-\frac{52\!\cdots\!11}{13\!\cdots\!97}a^{6}+\frac{15\!\cdots\!90}{13\!\cdots\!97}a^{5}-\frac{43\!\cdots\!22}{13\!\cdots\!97}a^{4}+\frac{50\!\cdots\!07}{13\!\cdots\!97}a^{3}+\frac{45\!\cdots\!99}{13\!\cdots\!97}a^{2}+\frac{37\!\cdots\!16}{13\!\cdots\!97}a-\frac{32\!\cdots\!36}{13\!\cdots\!97}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{53}\times C_{53}$, which has order $2809$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{229987870023954017059236497189737894134743541980}{3137680228602444474088975878125518885635965438371} a^{25} + \frac{217136480836551540404588632151115363363948328202}{3137680228602444474088975878125518885635965438371} a^{24} - \frac{5734368197620153028358493469558145698063203294598}{3137680228602444474088975878125518885635965438371} a^{23} + \frac{2895769853953695503445872483572537182694702551756}{3137680228602444474088975878125518885635965438371} a^{22} - \frac{92903090782795538430449179718308485758584153051060}{3137680228602444474088975878125518885635965438371} a^{21} + \frac{38910900127714861412854367362364439244898433859460}{3137680228602444474088975878125518885635965438371} a^{20} - \frac{825175169192090249025432598882797587021843700983579}{3137680228602444474088975878125518885635965438371} a^{19} + \frac{208619354791426775899170622718184951223205376339973}{3137680228602444474088975878125518885635965438371} a^{18} - \frac{5186025624562473117779830913522560002009908665030605}{3137680228602444474088975878125518885635965438371} a^{17} + \frac{950284046221967557819071670013626109187374876093148}{3137680228602444474088975878125518885635965438371} a^{16} - \frac{20026979216450597144491354405047755726381392519412945}{3137680228602444474088975878125518885635965438371} a^{15} + \frac{26026733398959552629061003677239193487412451502180}{3137680228602444474088975878125518885635965438371} a^{14} - \frac{53640081111470508555505879268919239920346609308326833}{3137680228602444474088975878125518885635965438371} a^{13} + \frac{1493283954000585215753084023395936297151511603120853}{3137680228602444474088975878125518885635965438371} a^{12} - \frac{83693528184162061027106813090510590280448512245797904}{3137680228602444474088975878125518885635965438371} a^{11} + \frac{2190262566064004435436005680569916912366060961235047}{3137680228602444474088975878125518885635965438371} a^{10} - \frac{91866436702243517298271969914984914726430188109122519}{3137680228602444474088975878125518885635965438371} a^{9} + \frac{7761435268729161722573189589323550986192528410571847}{3137680228602444474088975878125518885635965438371} a^{8} - \frac{51689186418254482677926859052944291289597257812419914}{3137680228602444474088975878125518885635965438371} a^{7} + \frac{4755838253545939984437862860116971870622966564403172}{3137680228602444474088975878125518885635965438371} a^{6} - \frac{20044193060199090632308192233670562915612723850599729}{3137680228602444474088975878125518885635965438371} a^{5} + \frac{2415825135601289194505318683440073804435597153774499}{3137680228602444474088975878125518885635965438371} a^{4} - \frac{1267780444146117601025600216051378277239936331305850}{3137680228602444474088975878125518885635965438371} a^{3} - \frac{180775132780258128332551968251888391460806926920950}{3137680228602444474088975878125518885635965438371} a^{2} - \frac{28118311719579089033381263797378756317127766600308}{3137680228602444474088975878125518885635965438371} a + \frac{1646897395182689836224362555359664278287504292319}{3137680228602444474088975878125518885635965438371} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{57\!\cdots\!23}{13\!\cdots\!97}a^{25}-\frac{44\!\cdots\!89}{13\!\cdots\!97}a^{24}+\frac{14\!\cdots\!19}{13\!\cdots\!97}a^{23}-\frac{21\!\cdots\!51}{59\!\cdots\!39}a^{22}+\frac{23\!\cdots\!37}{13\!\cdots\!97}a^{21}-\frac{58\!\cdots\!82}{13\!\cdots\!97}a^{20}+\frac{20\!\cdots\!56}{13\!\cdots\!97}a^{19}-\frac{18\!\cdots\!99}{13\!\cdots\!97}a^{18}+\frac{12\!\cdots\!74}{13\!\cdots\!97}a^{17}-\frac{23\!\cdots\!51}{13\!\cdots\!97}a^{16}+\frac{50\!\cdots\!48}{13\!\cdots\!97}a^{15}+\frac{81\!\cdots\!74}{13\!\cdots\!97}a^{14}+\frac{13\!\cdots\!94}{13\!\cdots\!97}a^{13}+\frac{18\!\cdots\!19}{13\!\cdots\!97}a^{12}+\frac{21\!\cdots\!25}{13\!\cdots\!97}a^{11}+\frac{34\!\cdots\!98}{16\!\cdots\!59}a^{10}+\frac{23\!\cdots\!95}{13\!\cdots\!97}a^{9}+\frac{17\!\cdots\!06}{13\!\cdots\!97}a^{8}+\frac{13\!\cdots\!65}{13\!\cdots\!97}a^{7}+\frac{80\!\cdots\!81}{13\!\cdots\!97}a^{6}+\frac{51\!\cdots\!05}{13\!\cdots\!97}a^{5}+\frac{13\!\cdots\!72}{13\!\cdots\!97}a^{4}+\frac{35\!\cdots\!02}{13\!\cdots\!97}a^{3}+\frac{54\!\cdots\!49}{13\!\cdots\!97}a^{2}+\frac{18\!\cdots\!78}{13\!\cdots\!97}a+\frac{44\!\cdots\!00}{13\!\cdots\!97}$, $\frac{17\!\cdots\!90}{13\!\cdots\!97}a^{25}-\frac{20\!\cdots\!98}{13\!\cdots\!97}a^{24}+\frac{43\!\cdots\!94}{13\!\cdots\!97}a^{23}-\frac{32\!\cdots\!02}{13\!\cdots\!97}a^{22}+\frac{71\!\cdots\!32}{13\!\cdots\!97}a^{21}-\frac{46\!\cdots\!70}{13\!\cdots\!97}a^{20}+\frac{63\!\cdots\!12}{13\!\cdots\!97}a^{19}-\frac{30\!\cdots\!52}{13\!\cdots\!97}a^{18}+\frac{39\!\cdots\!44}{13\!\cdots\!97}a^{17}-\frac{16\!\cdots\!71}{13\!\cdots\!97}a^{16}+\frac{15\!\cdots\!52}{13\!\cdots\!97}a^{15}-\frac{36\!\cdots\!54}{13\!\cdots\!97}a^{14}+\frac{40\!\cdots\!70}{13\!\cdots\!97}a^{13}-\frac{10\!\cdots\!74}{13\!\cdots\!97}a^{12}+\frac{62\!\cdots\!56}{13\!\cdots\!97}a^{11}-\frac{20\!\cdots\!04}{16\!\cdots\!59}a^{10}+\frac{67\!\cdots\!04}{13\!\cdots\!97}a^{9}-\frac{22\!\cdots\!66}{13\!\cdots\!97}a^{8}+\frac{37\!\cdots\!78}{13\!\cdots\!97}a^{7}-\frac{12\!\cdots\!36}{13\!\cdots\!97}a^{6}+\frac{14\!\cdots\!80}{13\!\cdots\!97}a^{5}-\frac{49\!\cdots\!86}{13\!\cdots\!97}a^{4}+\frac{79\!\cdots\!48}{13\!\cdots\!97}a^{3}+\frac{95\!\cdots\!44}{13\!\cdots\!97}a^{2}-\frac{66\!\cdots\!52}{13\!\cdots\!97}a+\frac{83\!\cdots\!64}{13\!\cdots\!97}$, $\frac{12\!\cdots\!78}{31\!\cdots\!71}a^{25}-\frac{15\!\cdots\!02}{31\!\cdots\!71}a^{24}+\frac{32\!\cdots\!64}{31\!\cdots\!71}a^{23}-\frac{24\!\cdots\!40}{31\!\cdots\!71}a^{22}+\frac{52\!\cdots\!00}{31\!\cdots\!71}a^{21}-\frac{34\!\cdots\!61}{31\!\cdots\!71}a^{20}+\frac{46\!\cdots\!07}{31\!\cdots\!71}a^{19}-\frac{23\!\cdots\!95}{31\!\cdots\!71}a^{18}+\frac{29\!\cdots\!72}{31\!\cdots\!71}a^{17}-\frac{12\!\cdots\!75}{31\!\cdots\!71}a^{16}+\frac{11\!\cdots\!00}{31\!\cdots\!71}a^{15}-\frac{28\!\cdots\!47}{31\!\cdots\!71}a^{14}+\frac{30\!\cdots\!27}{31\!\cdots\!71}a^{13}-\frac{82\!\cdots\!16}{31\!\cdots\!71}a^{12}+\frac{48\!\cdots\!13}{31\!\cdots\!71}a^{11}-\frac{12\!\cdots\!61}{31\!\cdots\!71}a^{10}+\frac{53\!\cdots\!33}{31\!\cdots\!71}a^{9}-\frac{16\!\cdots\!06}{31\!\cdots\!71}a^{8}+\frac{32\!\cdots\!88}{31\!\cdots\!71}a^{7}-\frac{98\!\cdots\!91}{31\!\cdots\!71}a^{6}+\frac{13\!\cdots\!81}{31\!\cdots\!71}a^{5}-\frac{41\!\cdots\!70}{31\!\cdots\!71}a^{4}+\frac{15\!\cdots\!10}{31\!\cdots\!71}a^{3}-\frac{10\!\cdots\!32}{31\!\cdots\!71}a^{2}+\frac{65\!\cdots\!81}{31\!\cdots\!71}a-\frac{22\!\cdots\!80}{31\!\cdots\!71}$, $\frac{18\!\cdots\!57}{13\!\cdots\!97}a^{25}-\frac{17\!\cdots\!57}{13\!\cdots\!97}a^{24}+\frac{45\!\cdots\!29}{13\!\cdots\!97}a^{23}-\frac{23\!\cdots\!97}{13\!\cdots\!97}a^{22}+\frac{74\!\cdots\!96}{13\!\cdots\!97}a^{21}-\frac{32\!\cdots\!25}{13\!\cdots\!97}a^{20}+\frac{65\!\cdots\!03}{13\!\cdots\!97}a^{19}-\frac{17\!\cdots\!18}{13\!\cdots\!97}a^{18}+\frac{41\!\cdots\!22}{13\!\cdots\!97}a^{17}-\frac{81\!\cdots\!81}{13\!\cdots\!97}a^{16}+\frac{15\!\cdots\!96}{13\!\cdots\!97}a^{15}-\frac{24\!\cdots\!77}{13\!\cdots\!97}a^{14}+\frac{42\!\cdots\!46}{13\!\cdots\!97}a^{13}-\frac{18\!\cdots\!39}{13\!\cdots\!97}a^{12}+\frac{65\!\cdots\!44}{13\!\cdots\!97}a^{11}-\frac{34\!\cdots\!60}{16\!\cdots\!59}a^{10}+\frac{72\!\cdots\!38}{13\!\cdots\!97}a^{9}-\frac{74\!\cdots\!81}{13\!\cdots\!97}a^{8}+\frac{40\!\cdots\!28}{13\!\cdots\!97}a^{7}-\frac{44\!\cdots\!16}{13\!\cdots\!97}a^{6}+\frac{15\!\cdots\!86}{13\!\cdots\!97}a^{5}-\frac{22\!\cdots\!56}{13\!\cdots\!97}a^{4}+\frac{98\!\cdots\!84}{13\!\cdots\!97}a^{3}+\frac{13\!\cdots\!52}{13\!\cdots\!97}a^{2}+\frac{96\!\cdots\!86}{13\!\cdots\!97}a+\frac{11\!\cdots\!10}{13\!\cdots\!97}$, $\frac{49\!\cdots\!18}{13\!\cdots\!97}a^{25}-\frac{51\!\cdots\!45}{13\!\cdots\!97}a^{24}+\frac{12\!\cdots\!09}{13\!\cdots\!97}a^{23}-\frac{74\!\cdots\!73}{13\!\cdots\!97}a^{22}+\frac{20\!\cdots\!50}{13\!\cdots\!97}a^{21}-\frac{10\!\cdots\!01}{13\!\cdots\!97}a^{20}+\frac{17\!\cdots\!56}{13\!\cdots\!97}a^{19}-\frac{61\!\cdots\!07}{13\!\cdots\!97}a^{18}+\frac{11\!\cdots\!61}{13\!\cdots\!97}a^{17}-\frac{31\!\cdots\!57}{13\!\cdots\!97}a^{16}+\frac{43\!\cdots\!93}{13\!\cdots\!97}a^{15}-\frac{41\!\cdots\!63}{13\!\cdots\!97}a^{14}+\frac{11\!\cdots\!90}{13\!\cdots\!97}a^{13}-\frac{14\!\cdots\!10}{13\!\cdots\!97}a^{12}+\frac{17\!\cdots\!54}{13\!\cdots\!97}a^{11}-\frac{26\!\cdots\!55}{16\!\cdots\!59}a^{10}+\frac{19\!\cdots\!55}{13\!\cdots\!97}a^{9}-\frac{35\!\cdots\!74}{13\!\cdots\!97}a^{8}+\frac{10\!\cdots\!46}{13\!\cdots\!97}a^{7}-\frac{20\!\cdots\!00}{13\!\cdots\!97}a^{6}+\frac{42\!\cdots\!13}{13\!\cdots\!97}a^{5}-\frac{89\!\cdots\!35}{13\!\cdots\!97}a^{4}+\frac{25\!\cdots\!22}{13\!\cdots\!97}a^{3}+\frac{33\!\cdots\!86}{13\!\cdots\!97}a^{2}+\frac{16\!\cdots\!67}{13\!\cdots\!97}a+\frac{28\!\cdots\!58}{13\!\cdots\!97}$, $\frac{18\!\cdots\!99}{16\!\cdots\!59}a^{25}-\frac{16\!\cdots\!98}{16\!\cdots\!59}a^{24}+\frac{46\!\cdots\!72}{16\!\cdots\!59}a^{23}-\frac{20\!\cdots\!91}{16\!\cdots\!59}a^{22}+\frac{74\!\cdots\!21}{16\!\cdots\!59}a^{21}-\frac{27\!\cdots\!65}{16\!\cdots\!59}a^{20}+\frac{66\!\cdots\!26}{16\!\cdots\!59}a^{19}-\frac{13\!\cdots\!24}{16\!\cdots\!59}a^{18}+\frac{41\!\cdots\!11}{16\!\cdots\!59}a^{17}-\frac{52\!\cdots\!54}{16\!\cdots\!59}a^{16}+\frac{16\!\cdots\!61}{16\!\cdots\!59}a^{15}+\frac{88\!\cdots\!45}{16\!\cdots\!59}a^{14}+\frac{43\!\cdots\!30}{16\!\cdots\!59}a^{13}+\frac{12\!\cdots\!13}{16\!\cdots\!59}a^{12}+\frac{67\!\cdots\!13}{16\!\cdots\!59}a^{11}+\frac{20\!\cdots\!84}{16\!\cdots\!59}a^{10}+\frac{74\!\cdots\!52}{16\!\cdots\!59}a^{9}-\frac{21\!\cdots\!54}{16\!\cdots\!59}a^{8}+\frac{42\!\cdots\!64}{16\!\cdots\!59}a^{7}-\frac{16\!\cdots\!53}{16\!\cdots\!59}a^{6}+\frac{16\!\cdots\!24}{16\!\cdots\!59}a^{5}-\frac{11\!\cdots\!58}{16\!\cdots\!59}a^{4}+\frac{10\!\cdots\!84}{16\!\cdots\!59}a^{3}+\frac{15\!\cdots\!21}{16\!\cdots\!59}a^{2}+\frac{34\!\cdots\!80}{16\!\cdots\!59}a+\frac{12\!\cdots\!58}{16\!\cdots\!59}$, $\frac{16\!\cdots\!08}{13\!\cdots\!97}a^{25}-\frac{13\!\cdots\!24}{13\!\cdots\!97}a^{24}+\frac{40\!\cdots\!62}{13\!\cdots\!97}a^{23}-\frac{16\!\cdots\!99}{13\!\cdots\!97}a^{22}+\frac{65\!\cdots\!09}{13\!\cdots\!97}a^{21}-\frac{21\!\cdots\!95}{13\!\cdots\!97}a^{20}+\frac{58\!\cdots\!32}{13\!\cdots\!97}a^{19}-\frac{93\!\cdots\!82}{13\!\cdots\!97}a^{18}+\frac{15\!\cdots\!65}{59\!\cdots\!39}a^{17}-\frac{33\!\cdots\!45}{13\!\cdots\!97}a^{16}+\frac{14\!\cdots\!24}{13\!\cdots\!97}a^{15}+\frac{12\!\cdots\!58}{13\!\cdots\!97}a^{14}+\frac{38\!\cdots\!32}{13\!\cdots\!97}a^{13}+\frac{24\!\cdots\!78}{13\!\cdots\!97}a^{12}+\frac{59\!\cdots\!89}{13\!\cdots\!97}a^{11}+\frac{46\!\cdots\!54}{16\!\cdots\!59}a^{10}+\frac{65\!\cdots\!35}{13\!\cdots\!97}a^{9}+\frac{42\!\cdots\!54}{13\!\cdots\!97}a^{8}+\frac{37\!\cdots\!12}{13\!\cdots\!97}a^{7}-\frac{19\!\cdots\!78}{13\!\cdots\!97}a^{6}+\frac{14\!\cdots\!39}{13\!\cdots\!97}a^{5}-\frac{52\!\cdots\!82}{13\!\cdots\!97}a^{4}+\frac{95\!\cdots\!46}{13\!\cdots\!97}a^{3}+\frac{14\!\cdots\!10}{13\!\cdots\!97}a^{2}+\frac{31\!\cdots\!92}{13\!\cdots\!97}a+\frac{11\!\cdots\!12}{13\!\cdots\!97}$, $\frac{10\!\cdots\!06}{13\!\cdots\!97}a^{25}-\frac{84\!\cdots\!14}{13\!\cdots\!97}a^{24}+\frac{26\!\cdots\!34}{13\!\cdots\!97}a^{23}-\frac{94\!\cdots\!70}{13\!\cdots\!97}a^{22}+\frac{42\!\cdots\!40}{13\!\cdots\!97}a^{21}-\frac{11\!\cdots\!62}{13\!\cdots\!97}a^{20}+\frac{37\!\cdots\!80}{13\!\cdots\!97}a^{19}-\frac{40\!\cdots\!70}{13\!\cdots\!97}a^{18}+\frac{23\!\cdots\!50}{13\!\cdots\!97}a^{17}-\frac{87\!\cdots\!22}{13\!\cdots\!97}a^{16}+\frac{91\!\cdots\!16}{13\!\cdots\!97}a^{15}+\frac{13\!\cdots\!22}{13\!\cdots\!97}a^{14}+\frac{24\!\cdots\!10}{13\!\cdots\!97}a^{13}+\frac{29\!\cdots\!08}{13\!\cdots\!97}a^{12}+\frac{37\!\cdots\!68}{13\!\cdots\!97}a^{11}+\frac{46\!\cdots\!18}{13\!\cdots\!97}a^{10}+\frac{41\!\cdots\!98}{13\!\cdots\!97}a^{9}+\frac{25\!\cdots\!92}{13\!\cdots\!97}a^{8}+\frac{22\!\cdots\!12}{13\!\cdots\!97}a^{7}+\frac{12\!\cdots\!12}{13\!\cdots\!97}a^{6}+\frac{82\!\cdots\!14}{13\!\cdots\!97}a^{5}+\frac{24\!\cdots\!50}{13\!\cdots\!97}a^{4}+\frac{16\!\cdots\!88}{13\!\cdots\!97}a^{3}+\frac{17\!\cdots\!31}{13\!\cdots\!97}a^{2}+\frac{22\!\cdots\!68}{13\!\cdots\!97}a-\frac{90\!\cdots\!34}{13\!\cdots\!97}$, $\frac{15\!\cdots\!88}{13\!\cdots\!97}a^{25}-\frac{13\!\cdots\!70}{13\!\cdots\!97}a^{24}+\frac{38\!\cdots\!70}{13\!\cdots\!97}a^{23}-\frac{15\!\cdots\!50}{13\!\cdots\!97}a^{22}+\frac{63\!\cdots\!50}{13\!\cdots\!97}a^{21}-\frac{19\!\cdots\!90}{13\!\cdots\!97}a^{20}+\frac{55\!\cdots\!80}{13\!\cdots\!97}a^{19}-\frac{82\!\cdots\!25}{13\!\cdots\!97}a^{18}+\frac{35\!\cdots\!95}{13\!\cdots\!97}a^{17}-\frac{27\!\cdots\!15}{13\!\cdots\!97}a^{16}+\frac{13\!\cdots\!45}{13\!\cdots\!97}a^{15}+\frac{14\!\cdots\!20}{13\!\cdots\!97}a^{14}+\frac{36\!\cdots\!15}{13\!\cdots\!97}a^{13}+\frac{28\!\cdots\!15}{13\!\cdots\!97}a^{12}+\frac{57\!\cdots\!90}{13\!\cdots\!97}a^{11}+\frac{53\!\cdots\!00}{16\!\cdots\!59}a^{10}+\frac{63\!\cdots\!05}{13\!\cdots\!97}a^{9}+\frac{11\!\cdots\!05}{13\!\cdots\!97}a^{8}+\frac{35\!\cdots\!45}{13\!\cdots\!97}a^{7}+\frac{21\!\cdots\!60}{13\!\cdots\!97}a^{6}+\frac{13\!\cdots\!55}{13\!\cdots\!97}a^{5}-\frac{35\!\cdots\!00}{13\!\cdots\!97}a^{4}+\frac{93\!\cdots\!30}{13\!\cdots\!97}a^{3}+\frac{13\!\cdots\!70}{13\!\cdots\!97}a^{2}+\frac{37\!\cdots\!25}{13\!\cdots\!97}a+\frac{11\!\cdots\!80}{13\!\cdots\!97}$, $\frac{21\!\cdots\!19}{13\!\cdots\!97}a^{25}-\frac{19\!\cdots\!72}{13\!\cdots\!97}a^{24}+\frac{53\!\cdots\!44}{13\!\cdots\!97}a^{23}-\frac{23\!\cdots\!83}{13\!\cdots\!97}a^{22}+\frac{87\!\cdots\!50}{13\!\cdots\!97}a^{21}-\frac{31\!\cdots\!56}{13\!\cdots\!97}a^{20}+\frac{77\!\cdots\!93}{13\!\cdots\!97}a^{19}-\frac{14\!\cdots\!11}{13\!\cdots\!97}a^{18}+\frac{48\!\cdots\!83}{13\!\cdots\!97}a^{17}-\frac{25\!\cdots\!03}{59\!\cdots\!39}a^{16}+\frac{18\!\cdots\!28}{13\!\cdots\!97}a^{15}+\frac{11\!\cdots\!73}{13\!\cdots\!97}a^{14}+\frac{50\!\cdots\!99}{13\!\cdots\!97}a^{13}+\frac{17\!\cdots\!40}{13\!\cdots\!97}a^{12}+\frac{79\!\cdots\!14}{13\!\cdots\!97}a^{11}+\frac{14\!\cdots\!27}{71\!\cdots\!33}a^{10}+\frac{87\!\cdots\!40}{13\!\cdots\!97}a^{9}-\frac{19\!\cdots\!27}{13\!\cdots\!97}a^{8}+\frac{49\!\cdots\!37}{13\!\cdots\!97}a^{7}-\frac{16\!\cdots\!05}{13\!\cdots\!97}a^{6}+\frac{19\!\cdots\!70}{13\!\cdots\!97}a^{5}-\frac{12\!\cdots\!08}{13\!\cdots\!97}a^{4}+\frac{12\!\cdots\!72}{13\!\cdots\!97}a^{3}+\frac{18\!\cdots\!63}{13\!\cdots\!97}a^{2}+\frac{46\!\cdots\!60}{13\!\cdots\!97}a+\frac{15\!\cdots\!26}{13\!\cdots\!97}$, $\frac{10\!\cdots\!39}{13\!\cdots\!97}a^{25}-\frac{12\!\cdots\!51}{13\!\cdots\!97}a^{24}+\frac{27\!\cdots\!38}{13\!\cdots\!97}a^{23}-\frac{18\!\cdots\!74}{13\!\cdots\!97}a^{22}+\frac{43\!\cdots\!09}{13\!\cdots\!97}a^{21}-\frac{25\!\cdots\!80}{13\!\cdots\!97}a^{20}+\frac{39\!\cdots\!18}{13\!\cdots\!97}a^{19}-\frac{16\!\cdots\!62}{13\!\cdots\!97}a^{18}+\frac{24\!\cdots\!98}{13\!\cdots\!97}a^{17}-\frac{86\!\cdots\!29}{13\!\cdots\!97}a^{16}+\frac{95\!\cdots\!84}{13\!\cdots\!97}a^{15}-\frac{16\!\cdots\!28}{13\!\cdots\!97}a^{14}+\frac{25\!\cdots\!74}{13\!\cdots\!97}a^{13}-\frac{50\!\cdots\!44}{13\!\cdots\!97}a^{12}+\frac{40\!\cdots\!76}{13\!\cdots\!97}a^{11}-\frac{78\!\cdots\!59}{13\!\cdots\!97}a^{10}+\frac{19\!\cdots\!53}{59\!\cdots\!39}a^{9}-\frac{11\!\cdots\!37}{13\!\cdots\!97}a^{8}+\frac{26\!\cdots\!59}{13\!\cdots\!97}a^{7}-\frac{65\!\cdots\!37}{13\!\cdots\!97}a^{6}+\frac{10\!\cdots\!94}{13\!\cdots\!97}a^{5}-\frac{28\!\cdots\!44}{13\!\cdots\!97}a^{4}+\frac{11\!\cdots\!45}{13\!\cdots\!97}a^{3}-\frac{69\!\cdots\!55}{13\!\cdots\!97}a^{2}+\frac{26\!\cdots\!28}{13\!\cdots\!97}a-\frac{70\!\cdots\!22}{59\!\cdots\!39}$, $\frac{12\!\cdots\!88}{13\!\cdots\!97}a^{25}-\frac{14\!\cdots\!56}{13\!\cdots\!97}a^{24}+\frac{30\!\cdots\!78}{13\!\cdots\!97}a^{23}-\frac{21\!\cdots\!56}{13\!\cdots\!97}a^{22}+\frac{49\!\cdots\!00}{13\!\cdots\!97}a^{21}-\frac{31\!\cdots\!77}{13\!\cdots\!97}a^{20}+\frac{43\!\cdots\!53}{13\!\cdots\!97}a^{19}-\frac{20\!\cdots\!74}{13\!\cdots\!97}a^{18}+\frac{27\!\cdots\!40}{13\!\cdots\!97}a^{17}-\frac{10\!\cdots\!53}{13\!\cdots\!97}a^{16}+\frac{46\!\cdots\!30}{59\!\cdots\!39}a^{15}-\frac{23\!\cdots\!46}{13\!\cdots\!97}a^{14}+\frac{28\!\cdots\!32}{13\!\cdots\!97}a^{13}-\frac{69\!\cdots\!80}{13\!\cdots\!97}a^{12}+\frac{19\!\cdots\!50}{59\!\cdots\!39}a^{11}-\frac{10\!\cdots\!93}{13\!\cdots\!97}a^{10}+\frac{49\!\cdots\!36}{13\!\cdots\!97}a^{9}-\frac{14\!\cdots\!53}{13\!\cdots\!97}a^{8}+\frac{28\!\cdots\!90}{13\!\cdots\!97}a^{7}-\frac{85\!\cdots\!91}{13\!\cdots\!97}a^{6}+\frac{11\!\cdots\!14}{13\!\cdots\!97}a^{5}-\frac{36\!\cdots\!33}{13\!\cdots\!97}a^{4}+\frac{11\!\cdots\!85}{13\!\cdots\!97}a^{3}-\frac{40\!\cdots\!86}{59\!\cdots\!39}a^{2}+\frac{57\!\cdots\!98}{13\!\cdots\!97}a-\frac{22\!\cdots\!68}{13\!\cdots\!97}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5382739421.971964 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 5382739421.971964 \cdot 2809}{6\cdot\sqrt{384766437057818380952237905666104641217782272563}}\cr\approx \mathstrut & 0.0966370230307511 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 + 25*x^24 - 14*x^23 + 405*x^22 - 192*x^21 + 3603*x^20 - 1111*x^19 + 22650*x^18 - 5414*x^17 + 87624*x^16 - 5096*x^15 + 234451*x^14 - 19756*x^13 + 367484*x^12 - 30562*x^11 + 404986*x^10 - 57146*x^9 + 232119*x^8 - 34742*x^7 + 91429*x^6 - 16226*x^5 + 7319*x^4 + 98*x^3 + 168*x^2 - 10*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 13.13.491258904256726154641.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $26$ R $26$ ${\href{/padicField/7.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/13.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/19.13.0.1}{13} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{13}$ $26$ ${\href{/padicField/31.13.0.1}{13} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/43.13.0.1}{13} }^{2}$ $26$ R $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $26$$2$$13$$13$
\(53\) Copy content Toggle raw display Deg $26$$13$$2$$24$