Normalized defining polynomial
\( x^{26} - 11 x^{25} + 8 x^{24} + 220 x^{23} + 18 x^{22} - 3704 x^{21} - 2308 x^{20} + 32061 x^{19} + 64360 x^{18} - 154129 x^{17} - 503077 x^{16} + 37356 x^{15} + 2148333 x^{14} + 1760065 x^{13} - 988693 x^{12} + 5630364 x^{11} + 48261148 x^{10} + 106509143 x^{9} + 187657668 x^{8} + 300082081 x^{7} + 625580801 x^{6} + 1033869253 x^{5} + 1699916559 x^{4} + 2235176701 x^{3} + 2932101364 x^{2} + 2418267426 x + 1492440721 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-338317693370822771423393222562696496647525569958371057767=-\,7^{13}\cdot 79^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(553=7\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{553}(512,·)$, $\chi_{553}(1,·)$, $\chi_{553}(258,·)$, $\chi_{553}(225,·)$, $\chi_{553}(8,·)$, $\chi_{553}(204,·)$, $\chi_{553}(141,·)$, $\chi_{553}(526,·)$, $\chi_{553}(337,·)$, $\chi_{553}(146,·)$, $\chi_{553}(405,·)$, $\chi_{553}(22,·)$, $\chi_{553}(538,·)$, $\chi_{553}(475,·)$, $\chi_{553}(223,·)$, $\chi_{553}(97,·)$, $\chi_{553}(482,·)$, $\chi_{553}(484,·)$, $\chi_{553}(64,·)$, $\chi_{553}(302,·)$, $\chi_{553}(176,·)$, $\chi_{553}(433,·)$, $\chi_{553}(496,·)$, $\chi_{553}(125,·)$, $\chi_{553}(62,·)$, $\chi_{553}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23} a^{15} - \frac{2}{23} a^{14} - \frac{2}{23} a^{13} - \frac{6}{23} a^{12} - \frac{5}{23} a^{11} + \frac{3}{23} a^{10} - \frac{2}{23} a^{9} - \frac{4}{23} a^{8} + \frac{8}{23} a^{7} + \frac{10}{23} a^{6} - \frac{4}{23} a^{5} - \frac{11}{23} a^{4} + \frac{2}{23} a^{3} + \frac{10}{23} a^{2} + \frac{2}{23} a$, $\frac{1}{23} a^{16} - \frac{6}{23} a^{14} - \frac{10}{23} a^{13} + \frac{6}{23} a^{12} - \frac{7}{23} a^{11} + \frac{4}{23} a^{10} - \frac{8}{23} a^{9} + \frac{3}{23} a^{7} - \frac{7}{23} a^{6} + \frac{4}{23} a^{5} + \frac{3}{23} a^{4} - \frac{9}{23} a^{3} - \frac{1}{23} a^{2} + \frac{4}{23} a$, $\frac{1}{23} a^{17} + \frac{1}{23} a^{14} - \frac{6}{23} a^{13} + \frac{3}{23} a^{12} - \frac{3}{23} a^{11} + \frac{10}{23} a^{10} + \frac{11}{23} a^{9} + \frac{2}{23} a^{8} - \frac{5}{23} a^{7} - \frac{5}{23} a^{6} + \frac{2}{23} a^{5} - \frac{6}{23} a^{4} + \frac{11}{23} a^{3} - \frac{5}{23} a^{2} - \frac{11}{23} a$, $\frac{1}{23} a^{18} - \frac{4}{23} a^{14} + \frac{5}{23} a^{13} + \frac{3}{23} a^{12} - \frac{8}{23} a^{11} + \frac{8}{23} a^{10} + \frac{4}{23} a^{9} - \frac{1}{23} a^{8} + \frac{10}{23} a^{7} - \frac{8}{23} a^{6} - \frac{2}{23} a^{5} - \frac{1}{23} a^{4} - \frac{7}{23} a^{3} + \frac{2}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{23} a^{19} - \frac{3}{23} a^{14} - \frac{5}{23} a^{13} - \frac{9}{23} a^{12} + \frac{11}{23} a^{11} - \frac{7}{23} a^{10} - \frac{9}{23} a^{9} - \frac{6}{23} a^{8} + \frac{1}{23} a^{7} - \frac{8}{23} a^{6} + \frac{6}{23} a^{5} - \frac{5}{23} a^{4} + \frac{10}{23} a^{3} - \frac{8}{23} a^{2} + \frac{8}{23} a$, $\frac{1}{23} a^{20} - \frac{11}{23} a^{14} + \frac{8}{23} a^{13} - \frac{7}{23} a^{12} + \frac{1}{23} a^{11} + \frac{11}{23} a^{9} - \frac{11}{23} a^{8} - \frac{7}{23} a^{7} - \frac{10}{23} a^{6} + \frac{6}{23} a^{5} - \frac{2}{23} a^{3} - \frac{8}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{529} a^{21} + \frac{8}{529} a^{20} + \frac{1}{529} a^{19} - \frac{9}{529} a^{18} + \frac{5}{529} a^{17} - \frac{7}{529} a^{16} + \frac{5}{529} a^{15} - \frac{262}{529} a^{14} - \frac{261}{529} a^{13} - \frac{237}{529} a^{12} - \frac{24}{529} a^{11} - \frac{182}{529} a^{10} - \frac{27}{529} a^{9} + \frac{84}{529} a^{8} - \frac{165}{529} a^{7} - \frac{125}{529} a^{6} + \frac{13}{529} a^{5} + \frac{166}{529} a^{4} + \frac{38}{529} a^{3} + \frac{242}{529} a^{2} + \frac{9}{23} a$, $\frac{1}{529} a^{22} + \frac{6}{529} a^{20} + \frac{6}{529} a^{19} + \frac{8}{529} a^{18} - \frac{1}{529} a^{17} - \frac{8}{529} a^{16} - \frac{3}{529} a^{15} + \frac{87}{529} a^{14} + \frac{172}{529} a^{13} - \frac{37}{529} a^{12} + \frac{263}{529} a^{11} + \frac{210}{529} a^{10} - \frac{22}{529} a^{9} - \frac{124}{529} a^{8} - \frac{116}{529} a^{7} + \frac{231}{529} a^{6} - \frac{99}{529} a^{5} + \frac{182}{529} a^{4} + \frac{122}{529} a^{3} + \frac{226}{529} a^{2} - \frac{2}{23} a$, $\frac{1}{529} a^{23} + \frac{4}{529} a^{20} + \frac{2}{529} a^{19} + \frac{7}{529} a^{18} + \frac{8}{529} a^{17} - \frac{7}{529} a^{16} + \frac{11}{529} a^{15} + \frac{249}{529} a^{14} - \frac{173}{529} a^{13} - \frac{224}{529} a^{12} + \frac{124}{529} a^{11} - \frac{218}{529} a^{10} - \frac{261}{529} a^{9} + \frac{254}{529} a^{8} + \frac{232}{529} a^{7} + \frac{191}{529} a^{6} + \frac{35}{529} a^{5} - \frac{9}{23} a^{4} - \frac{2}{529} a^{3} + \frac{43}{529} a^{2} - \frac{3}{23} a$, $\frac{1}{28823623} a^{24} + \frac{22021}{28823623} a^{23} + \frac{18345}{28823623} a^{22} + \frac{16920}{28823623} a^{21} + \frac{441906}{28823623} a^{20} + \frac{556331}{28823623} a^{19} + \frac{210380}{28823623} a^{18} + \frac{137171}{28823623} a^{17} - \frac{96227}{28823623} a^{16} - \frac{575433}{28823623} a^{15} - \frac{2958}{28823623} a^{14} - \frac{12547399}{28823623} a^{13} - \frac{3846494}{28823623} a^{12} + \frac{10541683}{28823623} a^{11} + \frac{403067}{28823623} a^{10} + \frac{8821288}{28823623} a^{9} - \frac{4396675}{28823623} a^{8} + \frac{489294}{28823623} a^{7} - \frac{106738}{279841} a^{6} - \frac{10842518}{28823623} a^{5} - \frac{12333564}{28823623} a^{4} - \frac{2600531}{28823623} a^{3} + \frac{172119}{1253201} a^{2} + \frac{803}{54487} a - \frac{216}{2369}$, $\frac{1}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{25} + \frac{122675322882705031293623893442790386864283627987101323347007863512765535923200}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{24} + \frac{29394271347768050929606096409022120662514645795821068910928823966818974921970098332}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{23} - \frac{14304651727006441593200614706011519684212108430984276028163701244565487123660447101}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{22} + \frac{11104644828247924417567644654760685747113006554572694491877011420713571303241992825}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{21} + \frac{714382384108847451653047363154791453350676514078449453617748766190232864743278344042}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{20} + \frac{285456867896907052674232960408062852555276152082729409037302674657348189058237385533}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{19} - \frac{628644015693817610032886940515923613289878162571131010836790265890725512048715374567}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{18} + \frac{311212179282171788338123837254996375969753960995090881611404760612824171921332774460}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{17} + \frac{77402924717148713352498113055948130609541335498520085609181557632929561853982126199}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{16} - \frac{6322053379620138198270221454467114696793124027715582871940347837530842720223444936}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{15} - \frac{4434612243104579312341857894505637661408819971931663199148897035718367244537160307389}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{14} + \frac{4096072259702528178351688425974391097650028572382448872259491607768156619663201338503}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{13} - \frac{2332359104320264709492857236903721663613403911884381553388507343263812496838598806302}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{12} + \frac{908280012252542560992789234129858651518234426428931924178196546731276136004917272349}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{11} - \frac{16480803881334984897829901111403008462420434082826490729660586148654327010719784530953}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{10} - \frac{1238754198326914887046181317124239473191579939832715933492684188058087411747262562358}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{9} - \frac{10874833932686257009765622991318391620992493815212390803353100279843890596459833009728}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{8} - \frac{1057305487545591912388460207448092696408016879713325204688778643337752940565890966596}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{7} + \frac{14240421242147633756127944174270162824066036286110154801903538312392896659519606357385}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{6} + \frac{7499990997356650552325859177598336791288105856014311211524132781868180236496125803999}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{5} - \frac{15306940547791327787445096744693771720553013121848410761666114633502661869315327698997}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{4} + \frac{10036377864480467382340729369943842849526929035070000426424554244772724248899321400740}{33060617907924322736897751978549703444882842206209506294454017776575845255104016226391} a^{3} - \frac{700788919739435658825135917758096051770127829719709621344118622345219150625528904283}{1437418169909753162473815303415204497603601835052587230193652946807645445874087662017} a^{2} - \frac{18277168228525296662411400687353241522365341328337693460725544832165039130221231247}{62496442169989267933644143626748021634939210219677705660593606382941106342351637479} a - \frac{702995640183707369018582830936393102452295954116755288699409727890862939176509705}{2717236616086489910158441027249913984127791748681639376547548103606135058363114673}$
Class group and class number
$C_{8511191}$, which has order $8511191$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57529828940.82975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | $26$ | $26$ | R | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{2}$ | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $79$ | 79.13.12.1 | $x^{13} - 79$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |
| 79.13.12.1 | $x^{13} - 79$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ | |