Properties

Label 26.0.338...767.1
Degree $26$
Signature $[0, 13]$
Discriminant $-3.383\times 10^{56}$
Root discriminant \(149.35\)
Ramified primes $7,79$
Class number $8511191$ (GRH)
Class group [8511191] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721)
 
gp: K = bnfinit(y^26 - 11*y^25 + 8*y^24 + 220*y^23 + 18*y^22 - 3704*y^21 - 2308*y^20 + 32061*y^19 + 64360*y^18 - 154129*y^17 - 503077*y^16 + 37356*y^15 + 2148333*y^14 + 1760065*y^13 - 988693*y^12 + 5630364*y^11 + 48261148*y^10 + 106509143*y^9 + 187657668*y^8 + 300082081*y^7 + 625580801*y^6 + 1033869253*y^5 + 1699916559*y^4 + 2235176701*y^3 + 2932101364*y^2 + 2418267426*y + 1492440721, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721)
 

\( x^{26} - 11 x^{25} + 8 x^{24} + 220 x^{23} + 18 x^{22} - 3704 x^{21} - 2308 x^{20} + 32061 x^{19} + \cdots + 1492440721 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-338317693370822771423393222562696496647525569958371057767\) \(\medspace = -\,7^{13}\cdot 79^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(149.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{1/2}79^{12/13}\approx 149.34985200406032$
Ramified primes:   \(7\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(553=7\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{553}(512,·)$, $\chi_{553}(1,·)$, $\chi_{553}(258,·)$, $\chi_{553}(225,·)$, $\chi_{553}(8,·)$, $\chi_{553}(204,·)$, $\chi_{553}(141,·)$, $\chi_{553}(526,·)$, $\chi_{553}(337,·)$, $\chi_{553}(146,·)$, $\chi_{553}(405,·)$, $\chi_{553}(22,·)$, $\chi_{553}(538,·)$, $\chi_{553}(475,·)$, $\chi_{553}(223,·)$, $\chi_{553}(97,·)$, $\chi_{553}(482,·)$, $\chi_{553}(484,·)$, $\chi_{553}(64,·)$, $\chi_{553}(302,·)$, $\chi_{553}(176,·)$, $\chi_{553}(433,·)$, $\chi_{553}(496,·)$, $\chi_{553}(125,·)$, $\chi_{553}(62,·)$, $\chi_{553}(447,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23}a^{15}-\frac{2}{23}a^{14}-\frac{2}{23}a^{13}-\frac{6}{23}a^{12}-\frac{5}{23}a^{11}+\frac{3}{23}a^{10}-\frac{2}{23}a^{9}-\frac{4}{23}a^{8}+\frac{8}{23}a^{7}+\frac{10}{23}a^{6}-\frac{4}{23}a^{5}-\frac{11}{23}a^{4}+\frac{2}{23}a^{3}+\frac{10}{23}a^{2}+\frac{2}{23}a$, $\frac{1}{23}a^{16}-\frac{6}{23}a^{14}-\frac{10}{23}a^{13}+\frac{6}{23}a^{12}-\frac{7}{23}a^{11}+\frac{4}{23}a^{10}-\frac{8}{23}a^{9}+\frac{3}{23}a^{7}-\frac{7}{23}a^{6}+\frac{4}{23}a^{5}+\frac{3}{23}a^{4}-\frac{9}{23}a^{3}-\frac{1}{23}a^{2}+\frac{4}{23}a$, $\frac{1}{23}a^{17}+\frac{1}{23}a^{14}-\frac{6}{23}a^{13}+\frac{3}{23}a^{12}-\frac{3}{23}a^{11}+\frac{10}{23}a^{10}+\frac{11}{23}a^{9}+\frac{2}{23}a^{8}-\frac{5}{23}a^{7}-\frac{5}{23}a^{6}+\frac{2}{23}a^{5}-\frac{6}{23}a^{4}+\frac{11}{23}a^{3}-\frac{5}{23}a^{2}-\frac{11}{23}a$, $\frac{1}{23}a^{18}-\frac{4}{23}a^{14}+\frac{5}{23}a^{13}+\frac{3}{23}a^{12}-\frac{8}{23}a^{11}+\frac{8}{23}a^{10}+\frac{4}{23}a^{9}-\frac{1}{23}a^{8}+\frac{10}{23}a^{7}-\frac{8}{23}a^{6}-\frac{2}{23}a^{5}-\frac{1}{23}a^{4}-\frac{7}{23}a^{3}+\frac{2}{23}a^{2}-\frac{2}{23}a$, $\frac{1}{23}a^{19}-\frac{3}{23}a^{14}-\frac{5}{23}a^{13}-\frac{9}{23}a^{12}+\frac{11}{23}a^{11}-\frac{7}{23}a^{10}-\frac{9}{23}a^{9}-\frac{6}{23}a^{8}+\frac{1}{23}a^{7}-\frac{8}{23}a^{6}+\frac{6}{23}a^{5}-\frac{5}{23}a^{4}+\frac{10}{23}a^{3}-\frac{8}{23}a^{2}+\frac{8}{23}a$, $\frac{1}{23}a^{20}-\frac{11}{23}a^{14}+\frac{8}{23}a^{13}-\frac{7}{23}a^{12}+\frac{1}{23}a^{11}+\frac{11}{23}a^{9}-\frac{11}{23}a^{8}-\frac{7}{23}a^{7}-\frac{10}{23}a^{6}+\frac{6}{23}a^{5}-\frac{2}{23}a^{3}-\frac{8}{23}a^{2}+\frac{6}{23}a$, $\frac{1}{529}a^{21}+\frac{8}{529}a^{20}+\frac{1}{529}a^{19}-\frac{9}{529}a^{18}+\frac{5}{529}a^{17}-\frac{7}{529}a^{16}+\frac{5}{529}a^{15}-\frac{262}{529}a^{14}-\frac{261}{529}a^{13}-\frac{237}{529}a^{12}-\frac{24}{529}a^{11}-\frac{182}{529}a^{10}-\frac{27}{529}a^{9}+\frac{84}{529}a^{8}-\frac{165}{529}a^{7}-\frac{125}{529}a^{6}+\frac{13}{529}a^{5}+\frac{166}{529}a^{4}+\frac{38}{529}a^{3}+\frac{242}{529}a^{2}+\frac{9}{23}a$, $\frac{1}{529}a^{22}+\frac{6}{529}a^{20}+\frac{6}{529}a^{19}+\frac{8}{529}a^{18}-\frac{1}{529}a^{17}-\frac{8}{529}a^{16}-\frac{3}{529}a^{15}+\frac{87}{529}a^{14}+\frac{172}{529}a^{13}-\frac{37}{529}a^{12}+\frac{263}{529}a^{11}+\frac{210}{529}a^{10}-\frac{22}{529}a^{9}-\frac{124}{529}a^{8}-\frac{116}{529}a^{7}+\frac{231}{529}a^{6}-\frac{99}{529}a^{5}+\frac{182}{529}a^{4}+\frac{122}{529}a^{3}+\frac{226}{529}a^{2}-\frac{2}{23}a$, $\frac{1}{529}a^{23}+\frac{4}{529}a^{20}+\frac{2}{529}a^{19}+\frac{7}{529}a^{18}+\frac{8}{529}a^{17}-\frac{7}{529}a^{16}+\frac{11}{529}a^{15}+\frac{249}{529}a^{14}-\frac{173}{529}a^{13}-\frac{224}{529}a^{12}+\frac{124}{529}a^{11}-\frac{218}{529}a^{10}-\frac{261}{529}a^{9}+\frac{254}{529}a^{8}+\frac{232}{529}a^{7}+\frac{191}{529}a^{6}+\frac{35}{529}a^{5}-\frac{9}{23}a^{4}-\frac{2}{529}a^{3}+\frac{43}{529}a^{2}-\frac{3}{23}a$, $\frac{1}{28823623}a^{24}+\frac{22021}{28823623}a^{23}+\frac{18345}{28823623}a^{22}+\frac{16920}{28823623}a^{21}+\frac{441906}{28823623}a^{20}+\frac{556331}{28823623}a^{19}+\frac{210380}{28823623}a^{18}+\frac{137171}{28823623}a^{17}-\frac{96227}{28823623}a^{16}-\frac{575433}{28823623}a^{15}-\frac{2958}{28823623}a^{14}-\frac{12547399}{28823623}a^{13}-\frac{3846494}{28823623}a^{12}+\frac{10541683}{28823623}a^{11}+\frac{403067}{28823623}a^{10}+\frac{8821288}{28823623}a^{9}-\frac{4396675}{28823623}a^{8}+\frac{489294}{28823623}a^{7}-\frac{106738}{279841}a^{6}-\frac{10842518}{28823623}a^{5}-\frac{12333564}{28823623}a^{4}-\frac{2600531}{28823623}a^{3}+\frac{172119}{1253201}a^{2}+\frac{803}{54487}a-\frac{216}{2369}$, $\frac{1}{33\!\cdots\!91}a^{25}+\frac{12\!\cdots\!00}{33\!\cdots\!91}a^{24}+\frac{29\!\cdots\!32}{33\!\cdots\!91}a^{23}-\frac{14\!\cdots\!01}{33\!\cdots\!91}a^{22}+\frac{11\!\cdots\!25}{33\!\cdots\!91}a^{21}+\frac{71\!\cdots\!42}{33\!\cdots\!91}a^{20}+\frac{28\!\cdots\!33}{33\!\cdots\!91}a^{19}-\frac{62\!\cdots\!67}{33\!\cdots\!91}a^{18}+\frac{31\!\cdots\!60}{33\!\cdots\!91}a^{17}+\frac{77\!\cdots\!99}{33\!\cdots\!91}a^{16}-\frac{63\!\cdots\!36}{33\!\cdots\!91}a^{15}-\frac{44\!\cdots\!89}{33\!\cdots\!91}a^{14}+\frac{40\!\cdots\!03}{33\!\cdots\!91}a^{13}-\frac{23\!\cdots\!02}{33\!\cdots\!91}a^{12}+\frac{90\!\cdots\!49}{33\!\cdots\!91}a^{11}-\frac{16\!\cdots\!53}{33\!\cdots\!91}a^{10}-\frac{12\!\cdots\!58}{33\!\cdots\!91}a^{9}-\frac{10\!\cdots\!28}{33\!\cdots\!91}a^{8}-\frac{10\!\cdots\!96}{33\!\cdots\!91}a^{7}+\frac{14\!\cdots\!85}{33\!\cdots\!91}a^{6}+\frac{74\!\cdots\!99}{33\!\cdots\!91}a^{5}-\frac{15\!\cdots\!97}{33\!\cdots\!91}a^{4}+\frac{10\!\cdots\!40}{33\!\cdots\!91}a^{3}-\frac{70\!\cdots\!83}{14\!\cdots\!17}a^{2}-\frac{18\!\cdots\!47}{62\!\cdots\!79}a-\frac{70\!\cdots\!05}{27\!\cdots\!73}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $23$

Class group and class number

$C_{8511191}$, which has order $8511191$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{34\!\cdots\!22}{33\!\cdots\!91}a^{25}-\frac{26\!\cdots\!66}{33\!\cdots\!91}a^{24}-\frac{14\!\cdots\!56}{33\!\cdots\!91}a^{23}+\frac{15\!\cdots\!59}{33\!\cdots\!91}a^{22}+\frac{69\!\cdots\!09}{33\!\cdots\!91}a^{21}-\frac{21\!\cdots\!96}{33\!\cdots\!91}a^{20}-\frac{24\!\cdots\!67}{33\!\cdots\!91}a^{19}+\frac{23\!\cdots\!63}{33\!\cdots\!91}a^{18}+\frac{29\!\cdots\!72}{33\!\cdots\!91}a^{17}-\frac{10\!\cdots\!56}{33\!\cdots\!91}a^{16}-\frac{29\!\cdots\!42}{33\!\cdots\!91}a^{15}+\frac{34\!\cdots\!51}{33\!\cdots\!91}a^{14}+\frac{10\!\cdots\!55}{33\!\cdots\!91}a^{13}+\frac{40\!\cdots\!09}{33\!\cdots\!91}a^{12}-\frac{25\!\cdots\!85}{33\!\cdots\!91}a^{11}+\frac{63\!\cdots\!90}{33\!\cdots\!91}a^{10}+\frac{20\!\cdots\!42}{33\!\cdots\!91}a^{9}+\frac{48\!\cdots\!81}{33\!\cdots\!91}a^{8}+\frac{48\!\cdots\!42}{33\!\cdots\!91}a^{7}+\frac{14\!\cdots\!36}{33\!\cdots\!91}a^{6}+\frac{89\!\cdots\!95}{14\!\cdots\!17}a^{5}+\frac{45\!\cdots\!03}{33\!\cdots\!91}a^{4}+\frac{49\!\cdots\!25}{33\!\cdots\!91}a^{3}+\frac{39\!\cdots\!66}{14\!\cdots\!17}a^{2}+\frac{14\!\cdots\!96}{62\!\cdots\!79}a+\frac{61\!\cdots\!20}{27\!\cdots\!73}$, $\frac{31\!\cdots\!56}{33\!\cdots\!91}a^{25}-\frac{20\!\cdots\!15}{33\!\cdots\!91}a^{24}-\frac{18\!\cdots\!70}{33\!\cdots\!91}a^{23}+\frac{15\!\cdots\!72}{33\!\cdots\!91}a^{22}+\frac{12\!\cdots\!24}{33\!\cdots\!91}a^{21}-\frac{21\!\cdots\!70}{33\!\cdots\!91}a^{20}-\frac{33\!\cdots\!46}{33\!\cdots\!91}a^{19}+\frac{23\!\cdots\!24}{33\!\cdots\!91}a^{18}+\frac{36\!\cdots\!09}{33\!\cdots\!91}a^{17}-\frac{10\!\cdots\!31}{33\!\cdots\!91}a^{16}-\frac{34\!\cdots\!96}{33\!\cdots\!91}a^{15}+\frac{30\!\cdots\!57}{33\!\cdots\!91}a^{14}+\frac{11\!\cdots\!05}{33\!\cdots\!91}a^{13}+\frac{70\!\cdots\!95}{33\!\cdots\!91}a^{12}-\frac{30\!\cdots\!13}{33\!\cdots\!91}a^{11}+\frac{60\!\cdots\!99}{33\!\cdots\!91}a^{10}+\frac{21\!\cdots\!00}{33\!\cdots\!91}a^{9}+\frac{55\!\cdots\!78}{33\!\cdots\!91}a^{8}+\frac{52\!\cdots\!89}{33\!\cdots\!91}a^{7}+\frac{15\!\cdots\!45}{33\!\cdots\!91}a^{6}+\frac{96\!\cdots\!27}{14\!\cdots\!17}a^{5}+\frac{50\!\cdots\!46}{33\!\cdots\!91}a^{4}+\frac{54\!\cdots\!61}{33\!\cdots\!91}a^{3}+\frac{44\!\cdots\!65}{14\!\cdots\!17}a^{2}+\frac{16\!\cdots\!61}{62\!\cdots\!79}a+\frac{72\!\cdots\!61}{27\!\cdots\!73}$, $\frac{21\!\cdots\!54}{33\!\cdots\!91}a^{25}-\frac{16\!\cdots\!75}{33\!\cdots\!91}a^{24}-\frac{95\!\cdots\!12}{33\!\cdots\!91}a^{23}+\frac{94\!\cdots\!16}{33\!\cdots\!91}a^{22}+\frac{55\!\cdots\!26}{33\!\cdots\!91}a^{21}-\frac{13\!\cdots\!29}{33\!\cdots\!91}a^{20}-\frac{17\!\cdots\!22}{33\!\cdots\!91}a^{19}+\frac{14\!\cdots\!89}{33\!\cdots\!91}a^{18}+\frac{20\!\cdots\!67}{33\!\cdots\!91}a^{17}-\frac{66\!\cdots\!40}{33\!\cdots\!91}a^{16}-\frac{19\!\cdots\!62}{33\!\cdots\!91}a^{15}+\frac{20\!\cdots\!97}{33\!\cdots\!91}a^{14}+\frac{70\!\cdots\!41}{33\!\cdots\!91}a^{13}+\frac{33\!\cdots\!65}{33\!\cdots\!91}a^{12}-\frac{17\!\cdots\!49}{33\!\cdots\!91}a^{11}+\frac{38\!\cdots\!02}{33\!\cdots\!91}a^{10}+\frac{13\!\cdots\!69}{33\!\cdots\!91}a^{9}+\frac{32\!\cdots\!16}{33\!\cdots\!91}a^{8}+\frac{32\!\cdots\!67}{33\!\cdots\!91}a^{7}+\frac{91\!\cdots\!39}{33\!\cdots\!91}a^{6}+\frac{58\!\cdots\!68}{14\!\cdots\!17}a^{5}+\frac{29\!\cdots\!62}{33\!\cdots\!91}a^{4}+\frac{32\!\cdots\!85}{33\!\cdots\!91}a^{3}+\frac{26\!\cdots\!50}{14\!\cdots\!17}a^{2}+\frac{96\!\cdots\!82}{62\!\cdots\!79}a+\frac{40\!\cdots\!01}{27\!\cdots\!73}$, $\frac{91\!\cdots\!14}{33\!\cdots\!91}a^{25}-\frac{67\!\cdots\!26}{33\!\cdots\!91}a^{24}-\frac{42\!\cdots\!64}{33\!\cdots\!91}a^{23}+\frac{41\!\cdots\!95}{33\!\cdots\!91}a^{22}+\frac{24\!\cdots\!61}{33\!\cdots\!91}a^{21}-\frac{57\!\cdots\!40}{33\!\cdots\!91}a^{20}-\frac{75\!\cdots\!03}{33\!\cdots\!91}a^{19}+\frac{63\!\cdots\!65}{33\!\cdots\!91}a^{18}+\frac{86\!\cdots\!82}{33\!\cdots\!91}a^{17}-\frac{28\!\cdots\!21}{33\!\cdots\!91}a^{16}-\frac{85\!\cdots\!86}{33\!\cdots\!91}a^{15}+\frac{88\!\cdots\!13}{33\!\cdots\!91}a^{14}+\frac{30\!\cdots\!45}{33\!\cdots\!91}a^{13}+\frac{14\!\cdots\!81}{33\!\cdots\!91}a^{12}-\frac{74\!\cdots\!67}{33\!\cdots\!91}a^{11}+\frac{16\!\cdots\!50}{33\!\cdots\!91}a^{10}+\frac{57\!\cdots\!82}{33\!\cdots\!91}a^{9}+\frac{13\!\cdots\!14}{33\!\cdots\!91}a^{8}+\frac{13\!\cdots\!12}{33\!\cdots\!91}a^{7}+\frac{39\!\cdots\!06}{33\!\cdots\!91}a^{6}+\frac{24\!\cdots\!01}{14\!\cdots\!17}a^{5}+\frac{12\!\cdots\!81}{33\!\cdots\!91}a^{4}+\frac{13\!\cdots\!39}{33\!\cdots\!91}a^{3}+\frac{11\!\cdots\!24}{14\!\cdots\!17}a^{2}+\frac{41\!\cdots\!42}{62\!\cdots\!79}a+\frac{17\!\cdots\!38}{27\!\cdots\!73}$, $\frac{72\!\cdots\!52}{33\!\cdots\!91}a^{25}-\frac{56\!\cdots\!83}{33\!\cdots\!91}a^{24}-\frac{30\!\cdots\!72}{33\!\cdots\!91}a^{23}+\frac{31\!\cdots\!53}{33\!\cdots\!91}a^{22}+\frac{17\!\cdots\!73}{33\!\cdots\!91}a^{21}-\frac{44\!\cdots\!65}{33\!\cdots\!91}a^{20}-\frac{56\!\cdots\!25}{33\!\cdots\!91}a^{19}+\frac{48\!\cdots\!53}{33\!\cdots\!91}a^{18}+\frac{66\!\cdots\!56}{33\!\cdots\!91}a^{17}-\frac{22\!\cdots\!13}{33\!\cdots\!91}a^{16}-\frac{65\!\cdots\!10}{33\!\cdots\!91}a^{15}+\frac{67\!\cdots\!37}{33\!\cdots\!91}a^{14}+\frac{23\!\cdots\!05}{33\!\cdots\!91}a^{13}+\frac{10\!\cdots\!01}{33\!\cdots\!91}a^{12}-\frac{57\!\cdots\!63}{33\!\cdots\!91}a^{11}+\frac{12\!\cdots\!56}{33\!\cdots\!91}a^{10}+\frac{44\!\cdots\!57}{33\!\cdots\!91}a^{9}+\frac{10\!\cdots\!27}{33\!\cdots\!91}a^{8}+\frac{10\!\cdots\!14}{33\!\cdots\!91}a^{7}+\frac{29\!\cdots\!56}{33\!\cdots\!91}a^{6}+\frac{19\!\cdots\!30}{14\!\cdots\!17}a^{5}+\frac{97\!\cdots\!95}{33\!\cdots\!91}a^{4}+\frac{10\!\cdots\!37}{33\!\cdots\!91}a^{3}+\frac{86\!\cdots\!83}{14\!\cdots\!17}a^{2}+\frac{32\!\cdots\!92}{62\!\cdots\!79}a+\frac{13\!\cdots\!55}{27\!\cdots\!73}$, $\frac{22\!\cdots\!40}{33\!\cdots\!91}a^{25}-\frac{20\!\cdots\!94}{33\!\cdots\!91}a^{24}-\frac{44\!\cdots\!94}{33\!\cdots\!91}a^{23}+\frac{82\!\cdots\!00}{33\!\cdots\!91}a^{22}-\frac{33\!\cdots\!30}{33\!\cdots\!91}a^{21}-\frac{11\!\cdots\!71}{33\!\cdots\!91}a^{20}-\frac{72\!\cdots\!04}{33\!\cdots\!91}a^{19}+\frac{12\!\cdots\!41}{33\!\cdots\!91}a^{18}+\frac{12\!\cdots\!68}{33\!\cdots\!91}a^{17}-\frac{65\!\cdots\!38}{33\!\cdots\!91}a^{16}-\frac{14\!\cdots\!70}{33\!\cdots\!91}a^{15}+\frac{21\!\cdots\!39}{33\!\cdots\!91}a^{14}+\frac{56\!\cdots\!57}{33\!\cdots\!91}a^{13}+\frac{67\!\cdots\!33}{33\!\cdots\!91}a^{12}-\frac{12\!\cdots\!45}{33\!\cdots\!91}a^{11}+\frac{33\!\cdots\!99}{33\!\cdots\!91}a^{10}+\frac{10\!\cdots\!41}{33\!\cdots\!91}a^{9}+\frac{23\!\cdots\!95}{33\!\cdots\!91}a^{8}+\frac{24\!\cdots\!99}{33\!\cdots\!91}a^{7}+\frac{67\!\cdots\!09}{33\!\cdots\!91}a^{6}+\frac{43\!\cdots\!76}{14\!\cdots\!17}a^{5}+\frac{21\!\cdots\!76}{33\!\cdots\!91}a^{4}+\frac{24\!\cdots\!62}{33\!\cdots\!91}a^{3}+\frac{19\!\cdots\!55}{14\!\cdots\!17}a^{2}+\frac{72\!\cdots\!82}{62\!\cdots\!79}a+\frac{28\!\cdots\!69}{27\!\cdots\!73}$, $\frac{93\!\cdots\!80}{14\!\cdots\!17}a^{25}-\frac{72\!\cdots\!78}{14\!\cdots\!17}a^{24}-\frac{39\!\cdots\!20}{14\!\cdots\!17}a^{23}+\frac{40\!\cdots\!14}{14\!\cdots\!17}a^{22}+\frac{22\!\cdots\!90}{14\!\cdots\!17}a^{21}-\frac{57\!\cdots\!58}{14\!\cdots\!17}a^{20}-\frac{72\!\cdots\!42}{14\!\cdots\!17}a^{19}+\frac{62\!\cdots\!75}{14\!\cdots\!17}a^{18}+\frac{85\!\cdots\!25}{14\!\cdots\!17}a^{17}-\frac{29\!\cdots\!71}{14\!\cdots\!17}a^{16}-\frac{84\!\cdots\!36}{14\!\cdots\!17}a^{15}+\frac{87\!\cdots\!78}{14\!\cdots\!17}a^{14}+\frac{30\!\cdots\!52}{14\!\cdots\!17}a^{13}+\frac{13\!\cdots\!01}{14\!\cdots\!17}a^{12}-\frac{73\!\cdots\!94}{14\!\cdots\!17}a^{11}+\frac{71\!\cdots\!53}{62\!\cdots\!79}a^{10}+\frac{57\!\cdots\!22}{14\!\cdots\!17}a^{9}+\frac{13\!\cdots\!29}{14\!\cdots\!17}a^{8}+\frac{13\!\cdots\!64}{14\!\cdots\!17}a^{7}+\frac{38\!\cdots\!94}{14\!\cdots\!17}a^{6}+\frac{57\!\cdots\!91}{14\!\cdots\!17}a^{5}+\frac{54\!\cdots\!11}{62\!\cdots\!79}a^{4}+\frac{13\!\cdots\!74}{14\!\cdots\!17}a^{3}+\frac{11\!\cdots\!28}{62\!\cdots\!79}a^{2}+\frac{41\!\cdots\!66}{27\!\cdots\!73}a+\frac{17\!\cdots\!07}{11\!\cdots\!51}$, $\frac{59\!\cdots\!62}{33\!\cdots\!91}a^{25}-\frac{57\!\cdots\!07}{33\!\cdots\!91}a^{24}-\frac{86\!\cdots\!46}{33\!\cdots\!91}a^{23}+\frac{20\!\cdots\!82}{33\!\cdots\!91}a^{22}-\frac{69\!\cdots\!54}{33\!\cdots\!91}a^{21}-\frac{29\!\cdots\!34}{33\!\cdots\!91}a^{20}-\frac{16\!\cdots\!68}{33\!\cdots\!91}a^{19}+\frac{31\!\cdots\!59}{33\!\cdots\!91}a^{18}+\frac{32\!\cdots\!98}{33\!\cdots\!91}a^{17}-\frac{16\!\cdots\!36}{33\!\cdots\!91}a^{16}-\frac{34\!\cdots\!86}{33\!\cdots\!91}a^{15}+\frac{49\!\cdots\!06}{33\!\cdots\!91}a^{14}+\frac{13\!\cdots\!56}{33\!\cdots\!91}a^{13}+\frac{15\!\cdots\!00}{33\!\cdots\!91}a^{12}-\frac{27\!\cdots\!30}{33\!\cdots\!91}a^{11}+\frac{86\!\cdots\!84}{33\!\cdots\!91}a^{10}+\frac{29\!\cdots\!99}{33\!\cdots\!91}a^{9}+\frac{60\!\cdots\!35}{33\!\cdots\!91}a^{8}+\frac{69\!\cdots\!48}{33\!\cdots\!91}a^{7}+\frac{17\!\cdots\!77}{33\!\cdots\!91}a^{6}+\frac{12\!\cdots\!65}{14\!\cdots\!17}a^{5}+\frac{56\!\cdots\!25}{33\!\cdots\!91}a^{4}+\frac{67\!\cdots\!28}{33\!\cdots\!91}a^{3}+\frac{49\!\cdots\!98}{14\!\cdots\!17}a^{2}+\frac{18\!\cdots\!79}{62\!\cdots\!79}a+\frac{70\!\cdots\!39}{27\!\cdots\!73}$, $\frac{78\!\cdots\!22}{33\!\cdots\!91}a^{25}-\frac{60\!\cdots\!16}{33\!\cdots\!91}a^{24}-\frac{32\!\cdots\!10}{33\!\cdots\!91}a^{23}+\frac{33\!\cdots\!31}{33\!\cdots\!91}a^{22}+\frac{18\!\cdots\!31}{33\!\cdots\!91}a^{21}-\frac{47\!\cdots\!81}{33\!\cdots\!91}a^{20}-\frac{60\!\cdots\!43}{33\!\cdots\!91}a^{19}+\frac{52\!\cdots\!88}{33\!\cdots\!91}a^{18}+\frac{71\!\cdots\!26}{33\!\cdots\!91}a^{17}-\frac{24\!\cdots\!16}{33\!\cdots\!91}a^{16}-\frac{70\!\cdots\!84}{33\!\cdots\!91}a^{15}+\frac{71\!\cdots\!08}{33\!\cdots\!91}a^{14}+\frac{25\!\cdots\!82}{33\!\cdots\!91}a^{13}+\frac{11\!\cdots\!33}{33\!\cdots\!91}a^{12}-\frac{61\!\cdots\!78}{33\!\cdots\!91}a^{11}+\frac{13\!\cdots\!60}{33\!\cdots\!91}a^{10}+\frac{48\!\cdots\!79}{33\!\cdots\!91}a^{9}+\frac{11\!\cdots\!59}{33\!\cdots\!91}a^{8}+\frac{11\!\cdots\!13}{33\!\cdots\!91}a^{7}+\frac{32\!\cdots\!36}{33\!\cdots\!91}a^{6}+\frac{21\!\cdots\!63}{14\!\cdots\!17}a^{5}+\frac{10\!\cdots\!09}{33\!\cdots\!91}a^{4}+\frac{11\!\cdots\!67}{33\!\cdots\!91}a^{3}+\frac{93\!\cdots\!37}{14\!\cdots\!17}a^{2}+\frac{34\!\cdots\!06}{62\!\cdots\!79}a+\frac{14\!\cdots\!84}{27\!\cdots\!73}$, $\frac{24\!\cdots\!76}{33\!\cdots\!91}a^{25}-\frac{20\!\cdots\!27}{33\!\cdots\!91}a^{24}-\frac{83\!\cdots\!42}{33\!\cdots\!91}a^{23}+\frac{10\!\cdots\!75}{33\!\cdots\!91}a^{22}+\frac{36\!\cdots\!53}{33\!\cdots\!91}a^{21}-\frac{14\!\cdots\!72}{33\!\cdots\!91}a^{20}-\frac{14\!\cdots\!73}{33\!\cdots\!91}a^{19}+\frac{15\!\cdots\!13}{33\!\cdots\!91}a^{18}+\frac{18\!\cdots\!03}{33\!\cdots\!91}a^{17}-\frac{73\!\cdots\!48}{33\!\cdots\!91}a^{16}-\frac{19\!\cdots\!76}{33\!\cdots\!91}a^{15}+\frac{23\!\cdots\!61}{33\!\cdots\!91}a^{14}+\frac{70\!\cdots\!41}{33\!\cdots\!91}a^{13}+\frac{23\!\cdots\!62}{33\!\cdots\!91}a^{12}-\frac{16\!\cdots\!67}{33\!\cdots\!91}a^{11}+\frac{41\!\cdots\!79}{33\!\cdots\!91}a^{10}+\frac{13\!\cdots\!41}{33\!\cdots\!91}a^{9}+\frac{32\!\cdots\!17}{33\!\cdots\!91}a^{8}+\frac{33\!\cdots\!76}{33\!\cdots\!91}a^{7}+\frac{92\!\cdots\!39}{33\!\cdots\!91}a^{6}+\frac{59\!\cdots\!39}{14\!\cdots\!17}a^{5}+\frac{29\!\cdots\!18}{33\!\cdots\!91}a^{4}+\frac{33\!\cdots\!25}{33\!\cdots\!91}a^{3}+\frac{26\!\cdots\!02}{14\!\cdots\!17}a^{2}+\frac{96\!\cdots\!95}{62\!\cdots\!79}a+\frac{39\!\cdots\!83}{27\!\cdots\!73}$, $\frac{97\!\cdots\!58}{33\!\cdots\!91}a^{25}-\frac{75\!\cdots\!34}{33\!\cdots\!91}a^{24}-\frac{39\!\cdots\!22}{33\!\cdots\!91}a^{23}+\frac{41\!\cdots\!45}{33\!\cdots\!91}a^{22}+\frac{22\!\cdots\!69}{33\!\cdots\!91}a^{21}-\frac{59\!\cdots\!56}{33\!\cdots\!91}a^{20}-\frac{73\!\cdots\!79}{33\!\cdots\!91}a^{19}+\frac{64\!\cdots\!29}{33\!\cdots\!91}a^{18}+\frac{87\!\cdots\!46}{33\!\cdots\!91}a^{17}-\frac{29\!\cdots\!74}{33\!\cdots\!91}a^{16}-\frac{86\!\cdots\!26}{33\!\cdots\!91}a^{15}+\frac{89\!\cdots\!30}{33\!\cdots\!91}a^{14}+\frac{31\!\cdots\!40}{33\!\cdots\!91}a^{13}+\frac{13\!\cdots\!38}{33\!\cdots\!91}a^{12}-\frac{74\!\cdots\!64}{33\!\cdots\!91}a^{11}+\frac{16\!\cdots\!74}{33\!\cdots\!91}a^{10}+\frac{59\!\cdots\!94}{33\!\cdots\!91}a^{9}+\frac{14\!\cdots\!15}{33\!\cdots\!91}a^{8}+\frac{14\!\cdots\!15}{33\!\cdots\!91}a^{7}+\frac{40\!\cdots\!64}{33\!\cdots\!91}a^{6}+\frac{25\!\cdots\!51}{14\!\cdots\!17}a^{5}+\frac{12\!\cdots\!66}{33\!\cdots\!91}a^{4}+\frac{14\!\cdots\!02}{33\!\cdots\!91}a^{3}+\frac{11\!\cdots\!94}{14\!\cdots\!17}a^{2}+\frac{42\!\cdots\!77}{62\!\cdots\!79}a+\frac{17\!\cdots\!57}{27\!\cdots\!73}$, $\frac{24\!\cdots\!58}{33\!\cdots\!91}a^{25}-\frac{22\!\cdots\!60}{33\!\cdots\!91}a^{24}-\frac{59\!\cdots\!80}{33\!\cdots\!91}a^{23}+\frac{96\!\cdots\!53}{33\!\cdots\!91}a^{22}-\frac{60\!\cdots\!69}{33\!\cdots\!91}a^{21}-\frac{13\!\cdots\!25}{33\!\cdots\!91}a^{20}-\frac{74\!\cdots\!99}{33\!\cdots\!91}a^{19}+\frac{14\!\cdots\!61}{33\!\cdots\!91}a^{18}+\frac{11\!\cdots\!71}{33\!\cdots\!91}a^{17}-\frac{75\!\cdots\!99}{33\!\cdots\!91}a^{16}-\frac{14\!\cdots\!54}{33\!\cdots\!91}a^{15}+\frac{26\!\cdots\!73}{33\!\cdots\!91}a^{14}+\frac{54\!\cdots\!65}{33\!\cdots\!91}a^{13}-\frac{41\!\cdots\!90}{33\!\cdots\!91}a^{12}-\frac{12\!\cdots\!17}{33\!\cdots\!91}a^{11}+\frac{44\!\cdots\!11}{33\!\cdots\!91}a^{10}+\frac{11\!\cdots\!50}{33\!\cdots\!91}a^{9}+\frac{25\!\cdots\!72}{33\!\cdots\!91}a^{8}+\frac{27\!\cdots\!46}{33\!\cdots\!91}a^{7}+\frac{80\!\cdots\!65}{33\!\cdots\!91}a^{6}+\frac{49\!\cdots\!36}{14\!\cdots\!17}a^{5}+\frac{24\!\cdots\!19}{33\!\cdots\!91}a^{4}+\frac{26\!\cdots\!89}{33\!\cdots\!91}a^{3}+\frac{20\!\cdots\!50}{14\!\cdots\!17}a^{2}+\frac{72\!\cdots\!24}{62\!\cdots\!79}a+\frac{27\!\cdots\!30}{27\!\cdots\!73}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 57529828940.82975 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 57529828940.82975 \cdot 8511191}{2\cdot\sqrt{338317693370822771423393222562696496647525569958371057767}}\cr\approx \mathstrut & 0.316613447558080 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 11*x^25 + 8*x^24 + 220*x^23 + 18*x^22 - 3704*x^21 - 2308*x^20 + 32061*x^19 + 64360*x^18 - 154129*x^17 - 503077*x^16 + 37356*x^15 + 2148333*x^14 + 1760065*x^13 - 988693*x^12 + 5630364*x^11 + 48261148*x^10 + 106509143*x^9 + 187657668*x^8 + 300082081*x^7 + 625580801*x^6 + 1033869253*x^5 + 1699916559*x^4 + 2235176701*x^3 + 2932101364*x^2 + 2418267426*x + 1492440721);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), 13.13.59091511031674153381441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }^{2}$ $26$ $26$ R ${\href{/padicField/11.13.0.1}{13} }^{2}$ $26$ $26$ $26$ ${\href{/padicField/23.1.0.1}{1} }^{26}$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/43.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/53.13.0.1}{13} }^{2}$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $26$$2$$13$$13$
\(79\) Copy content Toggle raw display 79.13.12.1$x^{13} + 79$$13$$1$$12$$C_{13}$$[\ ]_{13}$
79.13.12.1$x^{13} + 79$$13$$1$$12$$C_{13}$$[\ ]_{13}$