Properties

Label 26.0.337...664.1
Degree $26$
Signature $[0, 13]$
Discriminant $-3.376\times 10^{60}$
Root discriminant \(212.82\)
Ramified primes $2,157$
Class number $55496389$ (GRH)
Class group [13, 4268953] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201)
 
gp: K = bnfinit(y^26 + 145*y^24 + 8786*y^22 + 297801*y^20 + 6317962*y^18 + 88430622*y^16 + 835400600*y^14 + 5340563011*y^12 + 22740238646*y^10 + 62077115096*y^8 + 101147766894*y^6 + 86626329100*y^4 + 31642042988*y^2 + 3769837201, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201)
 

\( x^{26} + 145 x^{24} + 8786 x^{22} + 297801 x^{20} + 6317962 x^{18} + 88430622 x^{16} + 835400600 x^{14} + \cdots + 3769837201 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-3375759861985195519612137229985370185177350891905754190577664\) \(\medspace = -\,2^{26}\cdot 157^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(212.82\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 157^{12/13}\approx 212.82090722547485$
Ramified primes:   \(2\), \(157\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(628=2^{2}\cdot 157\)
Dirichlet character group:    $\lbrace$$\chi_{628}(1,·)$, $\chi_{628}(67,·)$, $\chi_{628}(487,·)$, $\chi_{628}(389,·)$, $\chi_{628}(601,·)$, $\chi_{628}(265,·)$, $\chi_{628}(75,·)$, $\chi_{628}(579,·)$, $\chi_{628}(203,·)$, $\chi_{628}(407,·)$, $\chi_{628}(485,·)$, $\chi_{628}(153,·)$, $\chi_{628}(413,·)$, $\chi_{628}(517,·)$, $\chi_{628}(353,·)$, $\chi_{628}(99,·)$, $\chi_{628}(101,·)$, $\chi_{628}(39,·)$, $\chi_{628}(171,·)$, $\chi_{628}(173,·)$, $\chi_{628}(93,·)$, $\chi_{628}(467,·)$, $\chi_{628}(415,·)$, $\chi_{628}(315,·)$, $\chi_{628}(287,·)$, $\chi_{628}(381,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13}a^{11}+\frac{1}{13}a^{9}+\frac{1}{13}a^{7}+\frac{1}{13}a^{5}+\frac{1}{13}a^{3}+\frac{1}{13}a$, $\frac{1}{13}a^{12}+\frac{1}{13}a^{10}+\frac{1}{13}a^{8}+\frac{1}{13}a^{6}+\frac{1}{13}a^{4}+\frac{1}{13}a^{2}$, $\frac{1}{13}a^{13}-\frac{1}{13}a$, $\frac{1}{13}a^{14}-\frac{1}{13}a^{2}$, $\frac{1}{13}a^{15}-\frac{1}{13}a^{3}$, $\frac{1}{13}a^{16}-\frac{1}{13}a^{4}$, $\frac{1}{13}a^{17}-\frac{1}{13}a^{5}$, $\frac{1}{169}a^{18}+\frac{3}{169}a^{16}+\frac{5}{169}a^{14}+\frac{6}{169}a^{12}+\frac{45}{169}a^{10}+\frac{58}{169}a^{8}+\frac{31}{169}a^{6}-\frac{10}{169}a^{4}-\frac{25}{169}a^{2}$, $\frac{1}{169}a^{19}+\frac{3}{169}a^{17}+\frac{5}{169}a^{15}+\frac{6}{169}a^{13}+\frac{6}{169}a^{11}+\frac{19}{169}a^{9}-\frac{8}{169}a^{7}-\frac{49}{169}a^{5}-\frac{64}{169}a^{3}-\frac{3}{13}a$, $\frac{1}{169}a^{20}-\frac{4}{169}a^{16}+\frac{4}{169}a^{14}+\frac{1}{169}a^{12}+\frac{66}{169}a^{10}+\frac{40}{169}a^{6}-\frac{21}{169}a^{4}+\frac{36}{169}a^{2}$, $\frac{1}{169}a^{21}-\frac{4}{169}a^{17}+\frac{4}{169}a^{15}+\frac{1}{169}a^{13}+\frac{1}{169}a^{11}-\frac{5}{13}a^{9}-\frac{25}{169}a^{7}+\frac{83}{169}a^{5}-\frac{29}{169}a^{3}-\frac{5}{13}a$, $\frac{1}{687661}a^{22}+\frac{1470}{687661}a^{20}-\frac{1824}{687661}a^{18}+\frac{1624}{52897}a^{16}-\frac{18767}{687661}a^{14}+\frac{15797}{687661}a^{12}+\frac{5994}{687661}a^{10}-\frac{740}{687661}a^{8}+\frac{176598}{687661}a^{6}-\frac{110147}{687661}a^{4}-\frac{207639}{687661}a^{2}+\frac{1849}{4069}$, $\frac{1}{687661}a^{23}+\frac{1470}{687661}a^{21}-\frac{1824}{687661}a^{19}+\frac{1624}{52897}a^{17}-\frac{18767}{687661}a^{15}+\frac{15797}{687661}a^{13}+\frac{5994}{687661}a^{11}-\frac{740}{687661}a^{9}+\frac{176598}{687661}a^{7}-\frac{110147}{687661}a^{5}-\frac{207639}{687661}a^{3}+\frac{1849}{4069}a$, $\frac{1}{10\!\cdots\!09}a^{24}-\frac{59\!\cdots\!30}{10\!\cdots\!09}a^{22}+\frac{35\!\cdots\!15}{81\!\cdots\!93}a^{20}+\frac{29\!\cdots\!66}{10\!\cdots\!09}a^{18}-\frac{47\!\cdots\!55}{25\!\cdots\!29}a^{16}+\frac{19\!\cdots\!10}{10\!\cdots\!09}a^{14}+\frac{34\!\cdots\!74}{10\!\cdots\!09}a^{12}-\frac{77\!\cdots\!12}{10\!\cdots\!09}a^{10}-\frac{14\!\cdots\!98}{10\!\cdots\!09}a^{8}-\frac{21\!\cdots\!69}{81\!\cdots\!93}a^{6}+\frac{19\!\cdots\!98}{10\!\cdots\!09}a^{4}-\frac{53\!\cdots\!39}{10\!\cdots\!09}a^{2}-\frac{19\!\cdots\!36}{63\!\cdots\!61}$, $\frac{1}{50\!\cdots\!07}a^{25}+\frac{64\!\cdots\!12}{50\!\cdots\!07}a^{23}-\frac{41\!\cdots\!32}{29\!\cdots\!03}a^{21}-\frac{58\!\cdots\!31}{50\!\cdots\!07}a^{19}+\frac{34\!\cdots\!73}{11\!\cdots\!67}a^{17}-\frac{16\!\cdots\!87}{50\!\cdots\!07}a^{15}+\frac{58\!\cdots\!86}{50\!\cdots\!07}a^{13}-\frac{12\!\cdots\!92}{50\!\cdots\!07}a^{11}-\frac{16\!\cdots\!90}{50\!\cdots\!07}a^{9}-\frac{13\!\cdots\!42}{38\!\cdots\!39}a^{7}+\frac{11\!\cdots\!67}{50\!\cdots\!07}a^{5}-\frac{45\!\cdots\!87}{50\!\cdots\!07}a^{3}+\frac{12\!\cdots\!43}{29\!\cdots\!03}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $13$

Class group and class number

$C_{13}\times C_{4268953}$, which has order $55496389$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{3453937810176431842324}{3308700176843220638364245187659} a^{25} - \frac{480128120190588989170507}{3308700176843220638364245187659} a^{23} - \frac{2111766065315231616290615}{254515398218709279874172706743} a^{21} - \frac{861801974554805568236383303}{3308700176843220638364245187659} a^{19} - \frac{39261447139104115264208748}{7859145313166794865473266479} a^{17} - \frac{202441016265507829013163293224}{3308700176843220638364245187659} a^{15} - \frac{1599060069500146769278402748908}{3308700176843220638364245187659} a^{13} - \frac{8003331143846220131054136244513}{3308700176843220638364245187659} a^{11} - \frac{24126290036857196509944964238003}{3308700176843220638364245187659} a^{9} - \frac{3023744864929009222293111227923}{254515398218709279874172706743} a^{7} - \frac{26357660572698679134019679412727}{3308700176843220638364245187659} a^{5} + \frac{1606169599550550988386049093170}{3308700176843220638364245187659} a^{3} + \frac{48771091076762291483583223310}{19578107555285329221090208211} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{94\!\cdots\!46}{10\!\cdots\!09}a^{24}+\frac{13\!\cdots\!30}{10\!\cdots\!09}a^{22}+\frac{56\!\cdots\!54}{81\!\cdots\!93}a^{20}+\frac{22\!\cdots\!27}{10\!\cdots\!09}a^{18}+\frac{99\!\cdots\!29}{25\!\cdots\!29}a^{16}+\frac{49\!\cdots\!50}{10\!\cdots\!09}a^{14}+\frac{36\!\cdots\!67}{10\!\cdots\!09}a^{12}+\frac{16\!\cdots\!37}{10\!\cdots\!09}a^{10}+\frac{38\!\cdots\!52}{10\!\cdots\!09}a^{8}+\frac{23\!\cdots\!91}{81\!\cdots\!93}a^{6}-\frac{26\!\cdots\!93}{10\!\cdots\!09}a^{4}-\frac{24\!\cdots\!79}{10\!\cdots\!09}a^{2}-\frac{23\!\cdots\!86}{63\!\cdots\!61}$, $\frac{94\!\cdots\!44}{10\!\cdots\!09}a^{24}+\frac{13\!\cdots\!19}{10\!\cdots\!09}a^{22}+\frac{57\!\cdots\!78}{81\!\cdots\!93}a^{20}+\frac{23\!\cdots\!78}{10\!\cdots\!09}a^{18}+\frac{10\!\cdots\!17}{25\!\cdots\!29}a^{16}+\frac{55\!\cdots\!72}{10\!\cdots\!09}a^{14}+\frac{44\!\cdots\!33}{10\!\cdots\!09}a^{12}+\frac{22\!\cdots\!45}{10\!\cdots\!09}a^{10}+\frac{73\!\cdots\!64}{10\!\cdots\!09}a^{8}+\frac{10\!\cdots\!64}{81\!\cdots\!93}a^{6}+\frac{13\!\cdots\!70}{10\!\cdots\!09}a^{4}+\frac{53\!\cdots\!86}{10\!\cdots\!09}a^{2}+\frac{39\!\cdots\!80}{63\!\cdots\!61}$, $\frac{15\!\cdots\!60}{10\!\cdots\!09}a^{24}+\frac{21\!\cdots\!25}{10\!\cdots\!09}a^{22}+\frac{93\!\cdots\!70}{81\!\cdots\!93}a^{20}+\frac{37\!\cdots\!01}{10\!\cdots\!09}a^{18}+\frac{17\!\cdots\!44}{25\!\cdots\!29}a^{16}+\frac{88\!\cdots\!03}{10\!\cdots\!09}a^{14}+\frac{69\!\cdots\!85}{10\!\cdots\!09}a^{12}+\frac{35\!\cdots\!94}{10\!\cdots\!09}a^{10}+\frac{11\!\cdots\!94}{10\!\cdots\!09}a^{8}+\frac{15\!\cdots\!35}{81\!\cdots\!93}a^{6}+\frac{19\!\cdots\!69}{10\!\cdots\!09}a^{4}+\frac{10\!\cdots\!97}{10\!\cdots\!09}a^{2}+\frac{13\!\cdots\!03}{63\!\cdots\!61}$, $\frac{22\!\cdots\!80}{10\!\cdots\!09}a^{24}+\frac{31\!\cdots\!41}{10\!\cdots\!09}a^{22}+\frac{13\!\cdots\!70}{81\!\cdots\!93}a^{20}+\frac{58\!\cdots\!48}{10\!\cdots\!09}a^{18}+\frac{27\!\cdots\!25}{25\!\cdots\!29}a^{16}+\frac{14\!\cdots\!22}{10\!\cdots\!09}a^{14}+\frac{12\!\cdots\!96}{10\!\cdots\!09}a^{12}+\frac{72\!\cdots\!48}{10\!\cdots\!09}a^{10}+\frac{26\!\cdots\!32}{10\!\cdots\!09}a^{8}+\frac{47\!\cdots\!09}{81\!\cdots\!93}a^{6}+\frac{81\!\cdots\!39}{10\!\cdots\!09}a^{4}+\frac{50\!\cdots\!01}{10\!\cdots\!09}a^{2}+\frac{47\!\cdots\!08}{63\!\cdots\!61}$, $\frac{16\!\cdots\!85}{10\!\cdots\!09}a^{24}+\frac{22\!\cdots\!97}{10\!\cdots\!09}a^{22}+\frac{10\!\cdots\!54}{81\!\cdots\!93}a^{20}+\frac{40\!\cdots\!58}{10\!\cdots\!09}a^{18}+\frac{18\!\cdots\!36}{25\!\cdots\!29}a^{16}+\frac{95\!\cdots\!15}{10\!\cdots\!09}a^{14}+\frac{76\!\cdots\!17}{10\!\cdots\!09}a^{12}+\frac{39\!\cdots\!05}{10\!\cdots\!09}a^{10}+\frac{12\!\cdots\!51}{10\!\cdots\!09}a^{8}+\frac{17\!\cdots\!73}{81\!\cdots\!93}a^{6}+\frac{21\!\cdots\!58}{10\!\cdots\!09}a^{4}+\frac{87\!\cdots\!06}{10\!\cdots\!09}a^{2}+\frac{64\!\cdots\!10}{63\!\cdots\!61}$, $\frac{54\!\cdots\!73}{81\!\cdots\!93}a^{24}+\frac{58\!\cdots\!99}{63\!\cdots\!61}a^{22}+\frac{44\!\cdots\!22}{81\!\cdots\!93}a^{20}+\frac{14\!\cdots\!71}{81\!\cdots\!93}a^{18}+\frac{66\!\cdots\!75}{19\!\cdots\!33}a^{16}+\frac{35\!\cdots\!30}{81\!\cdots\!93}a^{14}+\frac{29\!\cdots\!19}{81\!\cdots\!93}a^{12}+\frac{12\!\cdots\!67}{63\!\cdots\!61}a^{10}+\frac{52\!\cdots\!64}{81\!\cdots\!93}a^{8}+\frac{10\!\cdots\!96}{81\!\cdots\!93}a^{6}+\frac{97\!\cdots\!46}{81\!\cdots\!93}a^{4}+\frac{38\!\cdots\!96}{81\!\cdots\!93}a^{2}+\frac{27\!\cdots\!88}{48\!\cdots\!97}$, $\frac{27\!\cdots\!62}{10\!\cdots\!09}a^{24}+\frac{38\!\cdots\!88}{10\!\cdots\!09}a^{22}+\frac{16\!\cdots\!79}{81\!\cdots\!93}a^{20}+\frac{67\!\cdots\!15}{10\!\cdots\!09}a^{18}+\frac{30\!\cdots\!82}{25\!\cdots\!29}a^{16}+\frac{15\!\cdots\!54}{10\!\cdots\!09}a^{14}+\frac{12\!\cdots\!50}{10\!\cdots\!09}a^{12}+\frac{63\!\cdots\!61}{10\!\cdots\!09}a^{10}+\frac{19\!\cdots\!20}{10\!\cdots\!09}a^{8}+\frac{27\!\cdots\!47}{81\!\cdots\!93}a^{6}+\frac{31\!\cdots\!94}{10\!\cdots\!09}a^{4}+\frac{10\!\cdots\!20}{10\!\cdots\!09}a^{2}+\frac{60\!\cdots\!65}{63\!\cdots\!61}$, $\frac{67\!\cdots\!27}{10\!\cdots\!09}a^{24}+\frac{93\!\cdots\!03}{10\!\cdots\!09}a^{22}+\frac{40\!\cdots\!52}{81\!\cdots\!93}a^{20}+\frac{16\!\cdots\!76}{10\!\cdots\!09}a^{18}+\frac{73\!\cdots\!82}{25\!\cdots\!29}a^{16}+\frac{37\!\cdots\!66}{10\!\cdots\!09}a^{14}+\frac{29\!\cdots\!40}{10\!\cdots\!09}a^{12}+\frac{14\!\cdots\!90}{10\!\cdots\!09}a^{10}+\frac{45\!\cdots\!09}{10\!\cdots\!09}a^{8}+\frac{62\!\cdots\!72}{81\!\cdots\!93}a^{6}+\frac{74\!\cdots\!38}{10\!\cdots\!09}a^{4}+\frac{27\!\cdots\!33}{10\!\cdots\!09}a^{2}+\frac{20\!\cdots\!85}{63\!\cdots\!61}$, $\frac{49\!\cdots\!30}{10\!\cdots\!09}a^{24}+\frac{67\!\cdots\!53}{10\!\cdots\!09}a^{22}+\frac{29\!\cdots\!86}{81\!\cdots\!93}a^{20}+\frac{11\!\cdots\!02}{10\!\cdots\!09}a^{18}+\frac{51\!\cdots\!78}{25\!\cdots\!29}a^{16}+\frac{25\!\cdots\!27}{10\!\cdots\!09}a^{14}+\frac{19\!\cdots\!93}{10\!\cdots\!09}a^{12}+\frac{87\!\cdots\!87}{10\!\cdots\!09}a^{10}+\frac{23\!\cdots\!33}{10\!\cdots\!09}a^{8}+\frac{21\!\cdots\!13}{81\!\cdots\!93}a^{6}-\frac{11\!\cdots\!35}{10\!\cdots\!09}a^{4}-\frac{19\!\cdots\!90}{10\!\cdots\!09}a^{2}-\frac{15\!\cdots\!33}{63\!\cdots\!61}$, $\frac{31\!\cdots\!44}{10\!\cdots\!09}a^{24}+\frac{42\!\cdots\!33}{10\!\cdots\!09}a^{22}+\frac{18\!\cdots\!02}{81\!\cdots\!93}a^{20}+\frac{74\!\cdots\!87}{10\!\cdots\!09}a^{18}+\frac{33\!\cdots\!88}{25\!\cdots\!29}a^{16}+\frac{17\!\cdots\!77}{10\!\cdots\!09}a^{14}+\frac{13\!\cdots\!20}{10\!\cdots\!09}a^{12}+\frac{67\!\cdots\!41}{10\!\cdots\!09}a^{10}+\frac{20\!\cdots\!01}{10\!\cdots\!09}a^{8}+\frac{24\!\cdots\!72}{81\!\cdots\!93}a^{6}+\frac{16\!\cdots\!58}{10\!\cdots\!09}a^{4}-\frac{24\!\cdots\!82}{10\!\cdots\!09}a^{2}-\frac{62\!\cdots\!74}{63\!\cdots\!61}$, $\frac{92\!\cdots\!84}{10\!\cdots\!09}a^{24}+\frac{12\!\cdots\!67}{10\!\cdots\!09}a^{22}+\frac{55\!\cdots\!19}{81\!\cdots\!93}a^{20}+\frac{22\!\cdots\!01}{10\!\cdots\!09}a^{18}+\frac{10\!\cdots\!90}{25\!\cdots\!29}a^{16}+\frac{52\!\cdots\!99}{10\!\cdots\!09}a^{14}+\frac{40\!\cdots\!38}{10\!\cdots\!09}a^{12}+\frac{20\!\cdots\!75}{10\!\cdots\!09}a^{10}+\frac{63\!\cdots\!56}{10\!\cdots\!09}a^{8}+\frac{84\!\cdots\!63}{81\!\cdots\!93}a^{6}+\frac{89\!\cdots\!57}{10\!\cdots\!09}a^{4}+\frac{23\!\cdots\!29}{10\!\cdots\!09}a^{2}+\frac{11\!\cdots\!15}{63\!\cdots\!61}$, $\frac{12\!\cdots\!58}{10\!\cdots\!09}a^{24}+\frac{17\!\cdots\!61}{10\!\cdots\!09}a^{22}+\frac{77\!\cdots\!91}{81\!\cdots\!93}a^{20}+\frac{31\!\cdots\!43}{10\!\cdots\!09}a^{18}+\frac{14\!\cdots\!87}{25\!\cdots\!29}a^{16}+\frac{74\!\cdots\!10}{10\!\cdots\!09}a^{14}+\frac{58\!\cdots\!60}{10\!\cdots\!09}a^{12}+\frac{30\!\cdots\!86}{10\!\cdots\!09}a^{10}+\frac{95\!\cdots\!54}{10\!\cdots\!09}a^{8}+\frac{13\!\cdots\!37}{81\!\cdots\!93}a^{6}+\frac{16\!\cdots\!06}{10\!\cdots\!09}a^{4}+\frac{62\!\cdots\!25}{10\!\cdots\!09}a^{2}+\frac{45\!\cdots\!89}{63\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5466968796671.363 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 5466968796671.363 \cdot 55496389}{4\cdot\sqrt{3375759861985195519612137229985370185177350891905754190577664}}\cr\approx \mathstrut & 0.981982720049626 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 145*x^24 + 8786*x^22 + 297801*x^20 + 6317962*x^18 + 88430622*x^16 + 835400600*x^14 + 5340563011*x^12 + 22740238646*x^10 + 62077115096*x^8 + 101147766894*x^6 + 86626329100*x^4 + 31642042988*x^2 + 3769837201);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$

Intermediate fields

\(\Q(\sqrt{-1}) \), 13.13.224282727500720205065439601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $26$ ${\href{/padicField/5.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/padicField/13.1.0.1}{1} }^{26}$ ${\href{/padicField/17.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ ${\href{/padicField/41.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/padicField/53.13.0.1}{13} }^{2}$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $26$$2$$13$$26$
\(157\) Copy content Toggle raw display 157.13.12.1$x^{13} + 157$$13$$1$$12$$C_{13}$$[\ ]_{13}$
157.13.12.1$x^{13} + 157$$13$$1$$12$$C_{13}$$[\ ]_{13}$