Normalized defining polynomial
\( x^{26} + 145 x^{24} + 8786 x^{22} + 297801 x^{20} + 6317962 x^{18} + 88430622 x^{16} + 835400600 x^{14} + 5340563011 x^{12} + 22740238646 x^{10} + 62077115096 x^{8} + 101147766894 x^{6} + 86626329100 x^{4} + 31642042988 x^{2} + 3769837201 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3375759861985195519612137229985370185177350891905754190577664=-\,2^{26}\cdot 157^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $212.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(628=2^{2}\cdot 157\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{628}(1,·)$, $\chi_{628}(67,·)$, $\chi_{628}(487,·)$, $\chi_{628}(389,·)$, $\chi_{628}(601,·)$, $\chi_{628}(265,·)$, $\chi_{628}(75,·)$, $\chi_{628}(579,·)$, $\chi_{628}(203,·)$, $\chi_{628}(407,·)$, $\chi_{628}(485,·)$, $\chi_{628}(153,·)$, $\chi_{628}(413,·)$, $\chi_{628}(517,·)$, $\chi_{628}(353,·)$, $\chi_{628}(99,·)$, $\chi_{628}(101,·)$, $\chi_{628}(39,·)$, $\chi_{628}(171,·)$, $\chi_{628}(173,·)$, $\chi_{628}(93,·)$, $\chi_{628}(467,·)$, $\chi_{628}(415,·)$, $\chi_{628}(315,·)$, $\chi_{628}(287,·)$, $\chi_{628}(381,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} + \frac{1}{13} a^{9} + \frac{1}{13} a^{7} + \frac{1}{13} a^{5} + \frac{1}{13} a^{3} + \frac{1}{13} a$, $\frac{1}{13} a^{12} + \frac{1}{13} a^{10} + \frac{1}{13} a^{8} + \frac{1}{13} a^{6} + \frac{1}{13} a^{4} + \frac{1}{13} a^{2}$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{13} a^{16} - \frac{1}{13} a^{4}$, $\frac{1}{13} a^{17} - \frac{1}{13} a^{5}$, $\frac{1}{169} a^{18} + \frac{3}{169} a^{16} + \frac{5}{169} a^{14} + \frac{6}{169} a^{12} + \frac{45}{169} a^{10} + \frac{58}{169} a^{8} + \frac{31}{169} a^{6} - \frac{10}{169} a^{4} - \frac{25}{169} a^{2}$, $\frac{1}{169} a^{19} + \frac{3}{169} a^{17} + \frac{5}{169} a^{15} + \frac{6}{169} a^{13} + \frac{6}{169} a^{11} + \frac{19}{169} a^{9} - \frac{8}{169} a^{7} - \frac{49}{169} a^{5} - \frac{64}{169} a^{3} - \frac{3}{13} a$, $\frac{1}{169} a^{20} - \frac{4}{169} a^{16} + \frac{4}{169} a^{14} + \frac{1}{169} a^{12} + \frac{66}{169} a^{10} + \frac{40}{169} a^{6} - \frac{21}{169} a^{4} + \frac{36}{169} a^{2}$, $\frac{1}{169} a^{21} - \frac{4}{169} a^{17} + \frac{4}{169} a^{15} + \frac{1}{169} a^{13} + \frac{1}{169} a^{11} - \frac{5}{13} a^{9} - \frac{25}{169} a^{7} + \frac{83}{169} a^{5} - \frac{29}{169} a^{3} - \frac{5}{13} a$, $\frac{1}{687661} a^{22} + \frac{1470}{687661} a^{20} - \frac{1824}{687661} a^{18} + \frac{1624}{52897} a^{16} - \frac{18767}{687661} a^{14} + \frac{15797}{687661} a^{12} + \frac{5994}{687661} a^{10} - \frac{740}{687661} a^{8} + \frac{176598}{687661} a^{6} - \frac{110147}{687661} a^{4} - \frac{207639}{687661} a^{2} + \frac{1849}{4069}$, $\frac{1}{687661} a^{23} + \frac{1470}{687661} a^{21} - \frac{1824}{687661} a^{19} + \frac{1624}{52897} a^{17} - \frac{18767}{687661} a^{15} + \frac{15797}{687661} a^{13} + \frac{5994}{687661} a^{11} - \frac{740}{687661} a^{9} + \frac{176598}{687661} a^{7} - \frac{110147}{687661} a^{5} - \frac{207639}{687661} a^{3} + \frac{1849}{4069} a$, $\frac{1}{106520820451097081289736595536203738435809} a^{24} - \frac{59792274433508202672987655848343830}{106520820451097081289736595536203738435809} a^{22} + \frac{3562081969687284019904208807112745915}{8193909265469006253056661195092595264293} a^{20} + \frac{296866448756815252793769850334452846166}{106520820451097081289736595536203738435809} a^{18} - \frac{4761211711307889050932485874142700755}{253018575893342235842604739990982751629} a^{16} + \frac{1915638478494197467889421143242843248810}{106520820451097081289736595536203738435809} a^{14} + \frac{3401981517497397839945842506517883609674}{106520820451097081289736595536203738435809} a^{12} - \frac{7781467753824852443617692468168202952512}{106520820451097081289736595536203738435809} a^{10} - \frac{14371835166615280123794119494076300836398}{106520820451097081289736595536203738435809} a^{8} - \frac{2105264170727713453471728922092482070969}{8193909265469006253056661195092595264293} a^{6} + \frac{19357708554244623471927212566343472760498}{106520820451097081289736595536203738435809} a^{4} - \frac{53236476639576442567657422668268840001739}{106520820451097081289736595536203738435809} a^{2} - \frac{195444463129211467867279769485980408236}{630300712728385096388973938084045789561}$, $\frac{1}{503097834990531514931425940717490256632325907} a^{25} + \frac{64689703405208902780514799544724558612}{503097834990531514931425940717490256632325907} a^{23} - \frac{417402495460857997116895525543014262532}{2976910266216162810245123909570948264096603} a^{21} - \frac{589901447504471379575882233628460817589231}{503097834990531514931425940717490256632325907} a^{19} + \frac{34598586722188711207024437401562318422573}{1195006733944255379884622186977411535943767} a^{17} - \frac{16216286012015105378800342429464450745800687}{503097834990531514931425940717490256632325907} a^{15} + \frac{5853092622842781632288125734761590679944086}{503097834990531514931425940717490256632325907} a^{13} - \frac{12508061964520066691972129181930502530658492}{503097834990531514931425940717490256632325907} a^{11} - \frac{166330572074015712010891566157089107168518790}{503097834990531514931425940717490256632325907} a^{9} - \frac{13113497089588647316890030775012546315856942}{38699833460810116533186610824422327433255839} a^{7} + \frac{117852705215596486346273881902142010363214067}{503097834990531514931425940717490256632325907} a^{5} - \frac{45838486580158286312424039132300415192531087}{503097834990531514931425940717490256632325907} a^{3} + \frac{1297364466457041848484458006293275190499743}{2976910266216162810245123909570948264096603} a$
Class group and class number
$C_{13}\times C_{4268953}$, which has order $55496389$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3453937810176431842324}{3308700176843220638364245187659} a^{25} - \frac{480128120190588989170507}{3308700176843220638364245187659} a^{23} - \frac{2111766065315231616290615}{254515398218709279874172706743} a^{21} - \frac{861801974554805568236383303}{3308700176843220638364245187659} a^{19} - \frac{39261447139104115264208748}{7859145313166794865473266479} a^{17} - \frac{202441016265507829013163293224}{3308700176843220638364245187659} a^{15} - \frac{1599060069500146769278402748908}{3308700176843220638364245187659} a^{13} - \frac{8003331143846220131054136244513}{3308700176843220638364245187659} a^{11} - \frac{24126290036857196509944964238003}{3308700176843220638364245187659} a^{9} - \frac{3023744864929009222293111227923}{254515398218709279874172706743} a^{7} - \frac{26357660572698679134019679412727}{3308700176843220638364245187659} a^{5} + \frac{1606169599550550988386049093170}{3308700176843220638364245187659} a^{3} + \frac{48771091076762291483583223310}{19578107555285329221090208211} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5466968796671.363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 13.13.224282727500720205065439601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $26$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{2}$ | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $157$ | 157.13.12.1 | $x^{13} - 157$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |
| 157.13.12.1 | $x^{13} - 157$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ | |