Properties

Label 26.0.336...875.1
Degree $26$
Signature $[0, 13]$
Discriminant $-3.367\times 10^{56}$
Root discriminant \(149.32\)
Ramified primes $5,79$
Class number $4885304$ (GRH)
Class group [4885304] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141)
 
gp: K = bnfinit(y^26 - y^25 + 81*y^24 + 127*y^23 + 2487*y^22 + 10345*y^21 + 50834*y^20 + 263974*y^19 + 916837*y^18 + 3605259*y^17 + 11849642*y^16 + 33958807*y^15 + 95600897*y^14 + 229517195*y^13 + 508321268*y^12 + 1046082342*y^11 + 1876093298*y^10 + 3098569897*y^9 + 4639987670*y^8 + 5825110231*y^7 + 6533079805*y^6 + 6257078964*y^5 + 4117698851*y^4 + 3036419703*y^3 + 4545159242*y^2 + 2836865762*y + 672625141, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141)
 

\( x^{26} - x^{25} + 81 x^{24} + 127 x^{23} + 2487 x^{22} + 10345 x^{21} + 50834 x^{20} + 263974 x^{19} + \cdots + 672625141 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-336734286382459698713579075785535859888935158690185546875\) \(\medspace = -\,5^{13}\cdot 79^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(149.32\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}79^{25/26}\approx 149.32290699070484$
Ramified primes:   \(5\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-395}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(395=5\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{395}(1,·)$, $\chi_{395}(131,·)$, $\chi_{395}(196,·)$, $\chi_{395}(69,·)$, $\chi_{395}(326,·)$, $\chi_{395}(199,·)$, $\chi_{395}(264,·)$, $\chi_{395}(394,·)$, $\chi_{395}(141,·)$, $\chi_{395}(14,·)$, $\chi_{395}(294,·)$, $\chi_{395}(146,·)$, $\chi_{395}(21,·)$, $\chi_{395}(219,·)$, $\chi_{395}(349,·)$, $\chi_{395}(94,·)$, $\chi_{395}(229,·)$, $\chi_{395}(101,·)$, $\chi_{395}(166,·)$, $\chi_{395}(301,·)$, $\chi_{395}(46,·)$, $\chi_{395}(176,·)$, $\chi_{395}(374,·)$, $\chi_{395}(249,·)$, $\chi_{395}(381,·)$, $\chi_{395}(254,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{103}a^{22}+\frac{17}{103}a^{21}-\frac{13}{103}a^{20}-\frac{17}{103}a^{19}-\frac{34}{103}a^{18}-\frac{7}{103}a^{17}+\frac{45}{103}a^{16}-\frac{51}{103}a^{15}+\frac{36}{103}a^{14}+\frac{29}{103}a^{13}-\frac{9}{103}a^{12}+\frac{3}{103}a^{11}+\frac{14}{103}a^{10}-\frac{3}{103}a^{9}+\frac{31}{103}a^{8}+\frac{30}{103}a^{7}-\frac{24}{103}a^{6}+\frac{41}{103}a^{5}-\frac{28}{103}a^{4}+\frac{48}{103}a^{3}+\frac{22}{103}a^{2}-\frac{29}{103}a+\frac{1}{103}$, $\frac{1}{103}a^{23}+\frac{7}{103}a^{21}-\frac{2}{103}a^{20}+\frac{49}{103}a^{19}-\frac{47}{103}a^{18}-\frac{42}{103}a^{17}+\frac{8}{103}a^{16}-\frac{24}{103}a^{15}+\frac{35}{103}a^{14}+\frac{13}{103}a^{13}-\frac{50}{103}a^{12}-\frac{37}{103}a^{11}-\frac{35}{103}a^{10}-\frac{21}{103}a^{9}+\frac{18}{103}a^{8}-\frac{19}{103}a^{7}+\frac{37}{103}a^{6}-\frac{4}{103}a^{5}+\frac{9}{103}a^{4}+\frac{30}{103}a^{3}+\frac{9}{103}a^{2}-\frac{21}{103}a-\frac{17}{103}$, $\frac{1}{4738103}a^{24}+\frac{1843}{4738103}a^{23}-\frac{13470}{4738103}a^{22}+\frac{1599474}{4738103}a^{21}-\frac{1877518}{4738103}a^{20}-\frac{1912847}{4738103}a^{19}+\frac{2257382}{4738103}a^{18}-\frac{1789782}{4738103}a^{17}-\frac{1509578}{4738103}a^{16}-\frac{973455}{4738103}a^{15}+\frac{592969}{4738103}a^{14}-\frac{98609}{4738103}a^{13}+\frac{1940580}{4738103}a^{12}+\frac{1758012}{4738103}a^{11}-\frac{691984}{4738103}a^{10}+\frac{627780}{4738103}a^{9}+\frac{1062312}{4738103}a^{8}-\frac{552796}{4738103}a^{7}+\frac{1824880}{4738103}a^{6}+\frac{2124775}{4738103}a^{5}-\frac{572888}{4738103}a^{4}-\frac{1449484}{4738103}a^{3}+\frac{2142220}{4738103}a^{2}-\frac{1527637}{4738103}a-\frac{1729064}{4738103}$, $\frac{1}{16\!\cdots\!83}a^{25}-\frac{21\!\cdots\!13}{16\!\cdots\!83}a^{24}+\frac{73\!\cdots\!15}{16\!\cdots\!83}a^{23}+\frac{43\!\cdots\!84}{16\!\cdots\!83}a^{22}+\frac{14\!\cdots\!66}{16\!\cdots\!83}a^{21}-\frac{24\!\cdots\!30}{16\!\cdots\!83}a^{20}-\frac{52\!\cdots\!44}{16\!\cdots\!83}a^{19}-\frac{51\!\cdots\!32}{12\!\cdots\!57}a^{18}-\frac{75\!\cdots\!42}{16\!\cdots\!83}a^{17}+\frac{16\!\cdots\!67}{16\!\cdots\!83}a^{16}+\frac{21\!\cdots\!61}{16\!\cdots\!83}a^{15}-\frac{19\!\cdots\!30}{16\!\cdots\!83}a^{14}+\frac{23\!\cdots\!61}{16\!\cdots\!83}a^{13}-\frac{29\!\cdots\!10}{16\!\cdots\!83}a^{12}+\frac{40\!\cdots\!67}{16\!\cdots\!83}a^{11}-\frac{85\!\cdots\!55}{16\!\cdots\!83}a^{10}-\frac{65\!\cdots\!56}{16\!\cdots\!83}a^{9}-\frac{13\!\cdots\!23}{16\!\cdots\!83}a^{8}+\frac{10\!\cdots\!73}{16\!\cdots\!83}a^{7}-\frac{71\!\cdots\!36}{16\!\cdots\!83}a^{6}-\frac{60\!\cdots\!51}{16\!\cdots\!83}a^{5}-\frac{23\!\cdots\!27}{16\!\cdots\!83}a^{4}+\frac{48\!\cdots\!17}{16\!\cdots\!83}a^{3}-\frac{80\!\cdots\!59}{16\!\cdots\!83}a^{2}-\frac{69\!\cdots\!44}{16\!\cdots\!83}a+\frac{65\!\cdots\!03}{90\!\cdots\!43}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{4885304}$, which has order $4885304$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!53}{16\!\cdots\!83}a^{25}-\frac{20\!\cdots\!85}{16\!\cdots\!83}a^{24}+\frac{87\!\cdots\!30}{16\!\cdots\!83}a^{23}+\frac{29\!\cdots\!50}{10\!\cdots\!19}a^{22}+\frac{26\!\cdots\!00}{16\!\cdots\!83}a^{21}+\frac{84\!\cdots\!80}{16\!\cdots\!83}a^{20}+\frac{47\!\cdots\!34}{16\!\cdots\!83}a^{19}+\frac{18\!\cdots\!82}{12\!\cdots\!57}a^{18}+\frac{78\!\cdots\!48}{16\!\cdots\!83}a^{17}+\frac{33\!\cdots\!19}{16\!\cdots\!83}a^{16}+\frac{10\!\cdots\!88}{16\!\cdots\!83}a^{15}+\frac{18\!\cdots\!69}{10\!\cdots\!19}a^{14}+\frac{84\!\cdots\!26}{16\!\cdots\!83}a^{13}+\frac{19\!\cdots\!28}{16\!\cdots\!83}a^{12}+\frac{44\!\cdots\!65}{16\!\cdots\!83}a^{11}+\frac{89\!\cdots\!50}{16\!\cdots\!83}a^{10}+\frac{15\!\cdots\!77}{16\!\cdots\!83}a^{9}+\frac{26\!\cdots\!00}{16\!\cdots\!83}a^{8}+\frac{39\!\cdots\!41}{16\!\cdots\!83}a^{7}+\frac{49\!\cdots\!01}{16\!\cdots\!83}a^{6}+\frac{58\!\cdots\!30}{16\!\cdots\!83}a^{5}+\frac{52\!\cdots\!02}{16\!\cdots\!83}a^{4}+\frac{34\!\cdots\!17}{16\!\cdots\!83}a^{3}+\frac{35\!\cdots\!99}{16\!\cdots\!83}a^{2}+\frac{20\!\cdots\!72}{16\!\cdots\!83}a+\frac{28\!\cdots\!76}{90\!\cdots\!43}$, $\frac{16\!\cdots\!45}{16\!\cdots\!83}a^{25}-\frac{34\!\cdots\!73}{16\!\cdots\!83}a^{24}+\frac{13\!\cdots\!68}{16\!\cdots\!83}a^{23}+\frac{55\!\cdots\!55}{16\!\cdots\!83}a^{22}+\frac{37\!\cdots\!59}{16\!\cdots\!83}a^{21}+\frac{12\!\cdots\!49}{16\!\cdots\!83}a^{20}+\frac{61\!\cdots\!20}{16\!\cdots\!83}a^{19}+\frac{25\!\cdots\!01}{12\!\cdots\!57}a^{18}+\frac{97\!\cdots\!80}{16\!\cdots\!83}a^{17}+\frac{40\!\cdots\!25}{16\!\cdots\!83}a^{16}+\frac{12\!\cdots\!40}{16\!\cdots\!83}a^{15}+\frac{32\!\cdots\!13}{16\!\cdots\!83}a^{14}+\frac{92\!\cdots\!00}{16\!\cdots\!83}a^{13}+\frac{19\!\cdots\!94}{16\!\cdots\!83}a^{12}+\frac{40\!\cdots\!27}{16\!\cdots\!83}a^{11}+\frac{78\!\cdots\!37}{16\!\cdots\!83}a^{10}+\frac{11\!\cdots\!73}{16\!\cdots\!83}a^{9}+\frac{17\!\cdots\!43}{16\!\cdots\!83}a^{8}+\frac{22\!\cdots\!00}{16\!\cdots\!83}a^{7}+\frac{15\!\cdots\!28}{16\!\cdots\!83}a^{6}+\frac{17\!\cdots\!66}{16\!\cdots\!83}a^{5}+\frac{40\!\cdots\!84}{16\!\cdots\!83}a^{4}-\frac{21\!\cdots\!83}{16\!\cdots\!83}a^{3}+\frac{19\!\cdots\!13}{16\!\cdots\!83}a^{2}+\frac{24\!\cdots\!69}{16\!\cdots\!83}a+\frac{35\!\cdots\!80}{90\!\cdots\!43}$, $\frac{16\!\cdots\!06}{16\!\cdots\!83}a^{25}-\frac{60\!\cdots\!48}{16\!\cdots\!83}a^{24}+\frac{15\!\cdots\!17}{16\!\cdots\!83}a^{23}-\frac{15\!\cdots\!66}{16\!\cdots\!83}a^{22}+\frac{43\!\cdots\!98}{16\!\cdots\!83}a^{21}+\frac{68\!\cdots\!04}{16\!\cdots\!83}a^{20}+\frac{62\!\cdots\!09}{16\!\cdots\!83}a^{19}+\frac{21\!\cdots\!45}{12\!\cdots\!57}a^{18}+\frac{74\!\cdots\!30}{16\!\cdots\!83}a^{17}+\frac{38\!\cdots\!70}{16\!\cdots\!83}a^{16}+\frac{96\!\cdots\!95}{16\!\cdots\!83}a^{15}+\frac{28\!\cdots\!69}{16\!\cdots\!83}a^{14}+\frac{81\!\cdots\!30}{16\!\cdots\!83}a^{13}+\frac{15\!\cdots\!26}{16\!\cdots\!83}a^{12}+\frac{38\!\cdots\!71}{16\!\cdots\!83}a^{11}+\frac{69\!\cdots\!66}{16\!\cdots\!83}a^{10}+\frac{11\!\cdots\!34}{16\!\cdots\!83}a^{9}+\frac{18\!\cdots\!34}{16\!\cdots\!83}a^{8}+\frac{24\!\cdots\!45}{16\!\cdots\!83}a^{7}+\frac{25\!\cdots\!19}{16\!\cdots\!83}a^{6}+\frac{29\!\cdots\!86}{16\!\cdots\!83}a^{5}+\frac{20\!\cdots\!21}{16\!\cdots\!83}a^{4}-\frac{89\!\cdots\!46}{16\!\cdots\!83}a^{3}+\frac{22\!\cdots\!49}{16\!\cdots\!83}a^{2}+\frac{20\!\cdots\!97}{16\!\cdots\!83}a-\frac{40\!\cdots\!94}{90\!\cdots\!43}$, $\frac{70\!\cdots\!39}{15\!\cdots\!61}a^{25}-\frac{23\!\cdots\!80}{16\!\cdots\!83}a^{24}+\frac{61\!\cdots\!56}{16\!\cdots\!83}a^{23}-\frac{39\!\cdots\!74}{16\!\cdots\!83}a^{22}+\frac{16\!\cdots\!83}{16\!\cdots\!83}a^{21}+\frac{35\!\cdots\!10}{16\!\cdots\!83}a^{20}+\frac{22\!\cdots\!47}{16\!\cdots\!83}a^{19}+\frac{89\!\cdots\!25}{12\!\cdots\!57}a^{18}+\frac{28\!\cdots\!98}{16\!\cdots\!83}a^{17}+\frac{13\!\cdots\!81}{16\!\cdots\!83}a^{16}+\frac{35\!\cdots\!88}{16\!\cdots\!83}a^{15}+\frac{89\!\cdots\!76}{16\!\cdots\!83}a^{14}+\frac{25\!\cdots\!27}{16\!\cdots\!83}a^{13}+\frac{44\!\cdots\!85}{16\!\cdots\!83}a^{12}+\frac{92\!\cdots\!50}{16\!\cdots\!83}a^{11}+\frac{16\!\cdots\!56}{16\!\cdots\!83}a^{10}+\frac{18\!\cdots\!72}{16\!\cdots\!83}a^{9}+\frac{27\!\cdots\!51}{16\!\cdots\!83}a^{8}+\frac{24\!\cdots\!64}{16\!\cdots\!83}a^{7}-\frac{17\!\cdots\!87}{16\!\cdots\!83}a^{6}-\frac{11\!\cdots\!76}{16\!\cdots\!83}a^{5}-\frac{43\!\cdots\!31}{16\!\cdots\!83}a^{4}-\frac{12\!\cdots\!15}{16\!\cdots\!83}a^{3}+\frac{16\!\cdots\!35}{16\!\cdots\!83}a^{2}+\frac{62\!\cdots\!45}{16\!\cdots\!83}a-\frac{17\!\cdots\!48}{90\!\cdots\!43}$, $\frac{23\!\cdots\!92}{16\!\cdots\!83}a^{25}-\frac{36\!\cdots\!12}{16\!\cdots\!83}a^{24}+\frac{18\!\cdots\!71}{16\!\cdots\!83}a^{23}+\frac{19\!\cdots\!34}{16\!\cdots\!83}a^{22}+\frac{54\!\cdots\!85}{16\!\cdots\!83}a^{21}+\frac{20\!\cdots\!73}{16\!\cdots\!83}a^{20}+\frac{98\!\cdots\!25}{16\!\cdots\!83}a^{19}+\frac{40\!\cdots\!86}{12\!\cdots\!57}a^{18}+\frac{16\!\cdots\!02}{16\!\cdots\!83}a^{17}+\frac{68\!\cdots\!26}{16\!\cdots\!83}a^{16}+\frac{21\!\cdots\!71}{16\!\cdots\!83}a^{15}+\frac{58\!\cdots\!24}{16\!\cdots\!83}a^{14}+\frac{16\!\cdots\!83}{16\!\cdots\!83}a^{13}+\frac{37\!\cdots\!83}{16\!\cdots\!83}a^{12}+\frac{80\!\cdots\!16}{16\!\cdots\!83}a^{11}+\frac{16\!\cdots\!40}{16\!\cdots\!83}a^{10}+\frac{26\!\cdots\!95}{16\!\cdots\!83}a^{9}+\frac{44\!\cdots\!52}{16\!\cdots\!83}a^{8}+\frac{63\!\cdots\!45}{16\!\cdots\!83}a^{7}+\frac{68\!\cdots\!48}{16\!\cdots\!83}a^{6}+\frac{82\!\cdots\!49}{16\!\cdots\!83}a^{5}+\frac{62\!\cdots\!07}{16\!\cdots\!83}a^{4}+\frac{22\!\cdots\!87}{16\!\cdots\!83}a^{3}+\frac{56\!\cdots\!61}{16\!\cdots\!83}a^{2}+\frac{44\!\cdots\!31}{16\!\cdots\!83}a+\frac{16\!\cdots\!16}{90\!\cdots\!43}$, $\frac{22\!\cdots\!10}{16\!\cdots\!83}a^{25}-\frac{41\!\cdots\!65}{16\!\cdots\!83}a^{24}+\frac{18\!\cdots\!55}{16\!\cdots\!83}a^{23}+\frac{12\!\cdots\!73}{16\!\cdots\!83}a^{22}+\frac{56\!\cdots\!02}{16\!\cdots\!83}a^{21}+\frac{18\!\cdots\!76}{16\!\cdots\!83}a^{20}+\frac{10\!\cdots\!85}{16\!\cdots\!83}a^{19}+\frac{40\!\cdots\!57}{12\!\cdots\!57}a^{18}+\frac{17\!\cdots\!23}{16\!\cdots\!83}a^{17}+\frac{73\!\cdots\!97}{16\!\cdots\!83}a^{16}+\frac{23\!\cdots\!50}{16\!\cdots\!83}a^{15}+\frac{66\!\cdots\!54}{16\!\cdots\!83}a^{14}+\frac{19\!\cdots\!92}{16\!\cdots\!83}a^{13}+\frac{45\!\cdots\!56}{16\!\cdots\!83}a^{12}+\frac{10\!\cdots\!16}{16\!\cdots\!83}a^{11}+\frac{21\!\cdots\!64}{16\!\cdots\!83}a^{10}+\frac{39\!\cdots\!13}{16\!\cdots\!83}a^{9}+\frac{68\!\cdots\!07}{16\!\cdots\!83}a^{8}+\frac{10\!\cdots\!37}{16\!\cdots\!83}a^{7}+\frac{13\!\cdots\!42}{16\!\cdots\!83}a^{6}+\frac{17\!\cdots\!15}{16\!\cdots\!83}a^{5}+\frac{16\!\cdots\!79}{16\!\cdots\!83}a^{4}+\frac{12\!\cdots\!25}{16\!\cdots\!83}a^{3}+\frac{95\!\cdots\!35}{16\!\cdots\!83}a^{2}+\frac{45\!\cdots\!89}{16\!\cdots\!83}a-\frac{22\!\cdots\!98}{90\!\cdots\!43}$, $\frac{97\!\cdots\!87}{16\!\cdots\!83}a^{25}-\frac{24\!\cdots\!78}{16\!\cdots\!83}a^{24}+\frac{81\!\cdots\!45}{16\!\cdots\!83}a^{23}+\frac{59\!\cdots\!27}{16\!\cdots\!83}a^{22}+\frac{23\!\cdots\!22}{16\!\cdots\!83}a^{21}+\frac{66\!\cdots\!38}{16\!\cdots\!83}a^{20}+\frac{36\!\cdots\!70}{16\!\cdots\!83}a^{19}+\frac{14\!\cdots\!36}{12\!\cdots\!57}a^{18}+\frac{55\!\cdots\!94}{16\!\cdots\!83}a^{17}+\frac{24\!\cdots\!63}{16\!\cdots\!83}a^{16}+\frac{71\!\cdots\!16}{16\!\cdots\!83}a^{15}+\frac{19\!\cdots\!01}{16\!\cdots\!83}a^{14}+\frac{54\!\cdots\!28}{16\!\cdots\!83}a^{13}+\frac{11\!\cdots\!28}{16\!\cdots\!83}a^{12}+\frac{24\!\cdots\!20}{16\!\cdots\!83}a^{11}+\frac{46\!\cdots\!20}{16\!\cdots\!83}a^{10}+\frac{70\!\cdots\!56}{16\!\cdots\!83}a^{9}+\frac{11\!\cdots\!78}{16\!\cdots\!83}a^{8}+\frac{13\!\cdots\!16}{16\!\cdots\!83}a^{7}+\frac{11\!\cdots\!95}{16\!\cdots\!83}a^{6}+\frac{11\!\cdots\!63}{16\!\cdots\!83}a^{5}+\frac{22\!\cdots\!55}{16\!\cdots\!83}a^{4}-\frac{87\!\cdots\!34}{16\!\cdots\!83}a^{3}+\frac{12\!\cdots\!38}{16\!\cdots\!83}a^{2}+\frac{13\!\cdots\!24}{16\!\cdots\!83}a-\frac{14\!\cdots\!68}{90\!\cdots\!43}$, $\frac{23\!\cdots\!49}{10\!\cdots\!19}a^{25}-\frac{13\!\cdots\!47}{16\!\cdots\!83}a^{24}+\frac{32\!\cdots\!49}{16\!\cdots\!83}a^{23}-\frac{40\!\cdots\!62}{16\!\cdots\!83}a^{22}+\frac{95\!\cdots\!09}{16\!\cdots\!83}a^{21}+\frac{13\!\cdots\!41}{16\!\cdots\!83}a^{20}+\frac{12\!\cdots\!54}{16\!\cdots\!83}a^{19}+\frac{48\!\cdots\!42}{12\!\cdots\!57}a^{18}+\frac{15\!\cdots\!41}{16\!\cdots\!83}a^{17}+\frac{86\!\cdots\!36}{16\!\cdots\!83}a^{16}+\frac{21\!\cdots\!27}{16\!\cdots\!83}a^{15}+\frac{61\!\cdots\!79}{16\!\cdots\!83}a^{14}+\frac{19\!\cdots\!62}{16\!\cdots\!83}a^{13}+\frac{36\!\cdots\!22}{16\!\cdots\!83}a^{12}+\frac{89\!\cdots\!73}{16\!\cdots\!83}a^{11}+\frac{18\!\cdots\!81}{16\!\cdots\!83}a^{10}+\frac{26\!\cdots\!74}{16\!\cdots\!83}a^{9}+\frac{52\!\cdots\!83}{16\!\cdots\!83}a^{8}+\frac{76\!\cdots\!50}{16\!\cdots\!83}a^{7}+\frac{69\!\cdots\!35}{16\!\cdots\!83}a^{6}+\frac{11\!\cdots\!23}{16\!\cdots\!83}a^{5}+\frac{10\!\cdots\!07}{16\!\cdots\!83}a^{4}-\frac{12\!\cdots\!89}{16\!\cdots\!83}a^{3}+\frac{76\!\cdots\!48}{16\!\cdots\!83}a^{2}+\frac{81\!\cdots\!91}{16\!\cdots\!83}a-\frac{17\!\cdots\!63}{90\!\cdots\!43}$, $\frac{78\!\cdots\!91}{16\!\cdots\!83}a^{25}+\frac{96\!\cdots\!84}{16\!\cdots\!83}a^{24}+\frac{31\!\cdots\!63}{16\!\cdots\!83}a^{23}+\frac{10\!\cdots\!89}{16\!\cdots\!83}a^{22}+\frac{14\!\cdots\!39}{16\!\cdots\!83}a^{21}+\frac{36\!\cdots\!69}{16\!\cdots\!83}a^{20}+\frac{96\!\cdots\!67}{16\!\cdots\!83}a^{19}+\frac{49\!\cdots\!26}{12\!\cdots\!57}a^{18}+\frac{28\!\cdots\!65}{16\!\cdots\!83}a^{17}+\frac{91\!\cdots\!38}{16\!\cdots\!83}a^{16}+\frac{39\!\cdots\!46}{16\!\cdots\!83}a^{15}+\frac{10\!\cdots\!46}{16\!\cdots\!83}a^{14}+\frac{33\!\cdots\!91}{16\!\cdots\!83}a^{13}+\frac{90\!\cdots\!54}{16\!\cdots\!83}a^{12}+\frac{20\!\cdots\!33}{16\!\cdots\!83}a^{11}+\frac{47\!\cdots\!94}{16\!\cdots\!83}a^{10}+\frac{90\!\cdots\!74}{16\!\cdots\!83}a^{9}+\frac{16\!\cdots\!11}{16\!\cdots\!83}a^{8}+\frac{27\!\cdots\!70}{16\!\cdots\!83}a^{7}+\frac{37\!\cdots\!77}{16\!\cdots\!83}a^{6}+\frac{49\!\cdots\!12}{16\!\cdots\!83}a^{5}+\frac{52\!\cdots\!89}{16\!\cdots\!83}a^{4}+\frac{42\!\cdots\!11}{16\!\cdots\!83}a^{3}+\frac{24\!\cdots\!74}{16\!\cdots\!83}a^{2}+\frac{85\!\cdots\!92}{16\!\cdots\!83}a+\frac{25\!\cdots\!98}{90\!\cdots\!43}$, $\frac{57\!\cdots\!18}{16\!\cdots\!83}a^{25}-\frac{21\!\cdots\!09}{16\!\cdots\!83}a^{24}+\frac{49\!\cdots\!30}{16\!\cdots\!83}a^{23}-\frac{56\!\cdots\!99}{16\!\cdots\!83}a^{22}+\frac{83\!\cdots\!19}{10\!\cdots\!19}a^{21}+\frac{22\!\cdots\!31}{16\!\cdots\!83}a^{20}+\frac{15\!\cdots\!65}{16\!\cdots\!83}a^{19}+\frac{64\!\cdots\!01}{12\!\cdots\!57}a^{18}+\frac{16\!\cdots\!23}{16\!\cdots\!83}a^{17}+\frac{91\!\cdots\!69}{16\!\cdots\!83}a^{16}+\frac{21\!\cdots\!35}{16\!\cdots\!83}a^{15}+\frac{44\!\cdots\!89}{16\!\cdots\!83}a^{14}+\frac{14\!\cdots\!59}{16\!\cdots\!83}a^{13}+\frac{15\!\cdots\!04}{16\!\cdots\!83}a^{12}+\frac{24\!\cdots\!50}{16\!\cdots\!83}a^{11}+\frac{34\!\cdots\!79}{16\!\cdots\!83}a^{10}-\frac{92\!\cdots\!12}{16\!\cdots\!83}a^{9}-\frac{17\!\cdots\!64}{16\!\cdots\!83}a^{8}-\frac{43\!\cdots\!57}{16\!\cdots\!83}a^{7}-\frac{12\!\cdots\!69}{16\!\cdots\!83}a^{6}-\frac{12\!\cdots\!36}{16\!\cdots\!83}a^{5}-\frac{17\!\cdots\!26}{16\!\cdots\!83}a^{4}-\frac{26\!\cdots\!21}{16\!\cdots\!83}a^{3}-\frac{39\!\cdots\!89}{16\!\cdots\!83}a^{2}+\frac{61\!\cdots\!69}{16\!\cdots\!83}a-\frac{28\!\cdots\!44}{90\!\cdots\!43}$, $\frac{57\!\cdots\!78}{16\!\cdots\!83}a^{25}-\frac{44\!\cdots\!75}{16\!\cdots\!83}a^{24}+\frac{47\!\cdots\!85}{16\!\cdots\!83}a^{23}+\frac{78\!\cdots\!54}{16\!\cdots\!83}a^{22}+\frac{15\!\cdots\!00}{16\!\cdots\!83}a^{21}+\frac{60\!\cdots\!92}{16\!\cdots\!83}a^{20}+\frac{32\!\cdots\!09}{16\!\cdots\!83}a^{19}+\frac{11\!\cdots\!30}{12\!\cdots\!57}a^{18}+\frac{56\!\cdots\!29}{16\!\cdots\!83}a^{17}+\frac{22\!\cdots\!35}{16\!\cdots\!83}a^{16}+\frac{72\!\cdots\!41}{16\!\cdots\!83}a^{15}+\frac{21\!\cdots\!03}{16\!\cdots\!83}a^{14}+\frac{59\!\cdots\!36}{16\!\cdots\!83}a^{13}+\frac{14\!\cdots\!32}{16\!\cdots\!83}a^{12}+\frac{32\!\cdots\!74}{16\!\cdots\!83}a^{11}+\frac{64\!\cdots\!43}{16\!\cdots\!83}a^{10}+\frac{11\!\cdots\!69}{16\!\cdots\!83}a^{9}+\frac{19\!\cdots\!83}{16\!\cdots\!83}a^{8}+\frac{29\!\cdots\!79}{16\!\cdots\!83}a^{7}+\frac{37\!\cdots\!44}{16\!\cdots\!83}a^{6}+\frac{43\!\cdots\!53}{16\!\cdots\!83}a^{5}+\frac{39\!\cdots\!37}{16\!\cdots\!83}a^{4}+\frac{29\!\cdots\!53}{16\!\cdots\!83}a^{3}+\frac{26\!\cdots\!53}{16\!\cdots\!83}a^{2}+\frac{13\!\cdots\!77}{16\!\cdots\!83}a-\frac{59\!\cdots\!14}{90\!\cdots\!43}$, $\frac{22\!\cdots\!21}{16\!\cdots\!83}a^{25}+\frac{25\!\cdots\!98}{16\!\cdots\!83}a^{24}+\frac{18\!\cdots\!06}{16\!\cdots\!83}a^{23}+\frac{68\!\cdots\!36}{16\!\cdots\!83}a^{22}+\frac{68\!\cdots\!00}{16\!\cdots\!83}a^{21}+\frac{37\!\cdots\!58}{16\!\cdots\!83}a^{20}+\frac{18\!\cdots\!22}{16\!\cdots\!83}a^{19}+\frac{72\!\cdots\!01}{12\!\cdots\!57}a^{18}+\frac{38\!\cdots\!59}{16\!\cdots\!83}a^{17}+\frac{15\!\cdots\!66}{16\!\cdots\!83}a^{16}+\frac{53\!\cdots\!99}{16\!\cdots\!83}a^{15}+\frac{16\!\cdots\!61}{16\!\cdots\!83}a^{14}+\frac{49\!\cdots\!94}{16\!\cdots\!83}a^{13}+\frac{12\!\cdots\!05}{16\!\cdots\!83}a^{12}+\frac{30\!\cdots\!31}{16\!\cdots\!83}a^{11}+\frac{68\!\cdots\!22}{16\!\cdots\!83}a^{10}+\frac{13\!\cdots\!80}{16\!\cdots\!83}a^{9}+\frac{23\!\cdots\!04}{16\!\cdots\!83}a^{8}+\frac{38\!\cdots\!04}{16\!\cdots\!83}a^{7}+\frac{53\!\cdots\!97}{16\!\cdots\!83}a^{6}+\frac{67\!\cdots\!50}{16\!\cdots\!83}a^{5}+\frac{70\!\cdots\!50}{16\!\cdots\!83}a^{4}+\frac{57\!\cdots\!64}{16\!\cdots\!83}a^{3}+\frac{22\!\cdots\!37}{10\!\cdots\!19}a^{2}+\frac{13\!\cdots\!95}{16\!\cdots\!83}a-\frac{48\!\cdots\!30}{90\!\cdots\!43}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 57529828940.82975 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 57529828940.82975 \cdot 4885304}{2\cdot\sqrt{336734286382459698713579075785535859888935158690185546875}}\cr\approx \mathstrut & 0.182158440826062 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - x^25 + 81*x^24 + 127*x^23 + 2487*x^22 + 10345*x^21 + 50834*x^20 + 263974*x^19 + 916837*x^18 + 3605259*x^17 + 11849642*x^16 + 33958807*x^15 + 95600897*x^14 + 229517195*x^13 + 508321268*x^12 + 1046082342*x^11 + 1876093298*x^10 + 3098569897*x^9 + 4639987670*x^8 + 5825110231*x^7 + 6533079805*x^6 + 6257078964*x^5 + 4117698851*x^4 + 3036419703*x^3 + 4545159242*x^2 + 2836865762*x + 672625141);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$

Intermediate fields

\(\Q(\sqrt{-395}) \), 13.13.59091511031674153381441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $26$ ${\href{/padicField/3.13.0.1}{13} }^{2}$ R ${\href{/padicField/7.13.0.1}{13} }^{2}$ ${\href{/padicField/11.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/17.13.0.1}{13} }^{2}$ ${\href{/padicField/19.13.0.1}{13} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{13}$ $26$ ${\href{/padicField/31.13.0.1}{13} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/43.13.0.1}{13} }^{2}$ ${\href{/padicField/47.13.0.1}{13} }^{2}$ ${\href{/padicField/53.13.0.1}{13} }^{2}$ $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $26$$2$$13$$13$
\(79\) Copy content Toggle raw display Deg $26$$26$$1$$25$