Normalized defining polynomial
\(x^{26} + 6 x^{24} + 189 x^{22} + 2700 x^{20} + 22032 x^{18} + 262683 x^{16} + 3276126 x^{14} + 20111652 x^{12} + 46005732 x^{10} - 38618046 x^{8} - 195511239 x^{6} - 5668704 x^{4} + 416649744 x^{2} + 419306949\)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-3081633091018542230201228818947762663997833216\)\(\medspace = -\,2^{26}\cdot 3^{13}\cdot 263^{13}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $56.18$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 263$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{10935} a^{14} - \frac{1}{3645} a^{12} + \frac{1}{1215} a^{10} + \frac{2}{405} a^{8} + \frac{2}{45} a^{4} - \frac{1}{5}$, $\frac{1}{10935} a^{15} - \frac{1}{3645} a^{13} + \frac{1}{1215} a^{11} + \frac{2}{405} a^{9} + \frac{2}{45} a^{5} - \frac{1}{5} a$, $\frac{1}{32805} a^{16} - \frac{2}{1215} a^{10} + \frac{2}{405} a^{8} + \frac{2}{135} a^{6} + \frac{2}{45} a^{4} - \frac{1}{15} a^{2} - \frac{1}{5}$, $\frac{1}{32805} a^{17} - \frac{2}{1215} a^{11} + \frac{2}{405} a^{9} + \frac{2}{135} a^{7} + \frac{2}{45} a^{5} - \frac{1}{15} a^{3} - \frac{1}{5} a$, $\frac{1}{98415} a^{18} - \frac{2}{3645} a^{12} + \frac{2}{1215} a^{10} + \frac{2}{405} a^{8} + \frac{2}{135} a^{6} - \frac{1}{45} a^{4} - \frac{1}{15} a^{2}$, $\frac{1}{98415} a^{19} - \frac{2}{3645} a^{13} + \frac{2}{1215} a^{11} + \frac{2}{405} a^{9} + \frac{2}{135} a^{7} - \frac{1}{45} a^{5} - \frac{1}{15} a^{3}$, $\frac{1}{295245} a^{20} - \frac{1}{1215} a^{10} + \frac{1}{405} a^{8} - \frac{1}{135} a^{6} - \frac{2}{45} a^{4} - \frac{2}{5}$, $\frac{1}{295245} a^{21} - \frac{1}{1215} a^{11} + \frac{1}{405} a^{9} - \frac{1}{135} a^{7} - \frac{2}{45} a^{5} - \frac{2}{5} a$, $\frac{1}{4428675} a^{22} + \frac{2}{54675} a^{14} + \frac{2}{18225} a^{12} - \frac{2}{6075} a^{10} - \frac{2}{2025} a^{8} - \frac{7}{675} a^{6} + \frac{4}{225} a^{4} - \frac{4}{25} a^{2} + \frac{3}{25}$, $\frac{1}{4428675} a^{23} + \frac{2}{54675} a^{15} + \frac{2}{18225} a^{13} - \frac{2}{6075} a^{11} - \frac{2}{2025} a^{9} - \frac{7}{675} a^{7} + \frac{4}{225} a^{5} - \frac{4}{25} a^{3} + \frac{3}{25} a$, $\frac{1}{9098119773341881190055102375} a^{24} - \frac{111517670754832745959}{3032706591113960396685034125} a^{22} - \frac{33576830419614384256}{202180439407597359779002275} a^{20} - \frac{110595241762464996469}{67393479802532453259667425} a^{18} + \frac{218371243523453242756}{16046066619650584109444625} a^{16} - \frac{1711053520226177381006}{37440822112518029588704125} a^{14} + \frac{3710581171935455428}{277339423055689108064475} a^{12} - \frac{2687234379156102847964}{4160091345835336620967125} a^{10} + \frac{5887616501728354162816}{1386697115278445540322375} a^{8} - \frac{2382698545381883999296}{154077457253160615591375} a^{6} + \frac{7426451603688192304507}{154077457253160615591375} a^{4} - \frac{4695904475112349667134}{51359152417720205197125} a^{2} - \frac{974655113857922722892}{17119717472573401732375}$, $\frac{1}{9098119773341881190055102375} a^{25} - \frac{111517670754832745959}{3032706591113960396685034125} a^{23} - \frac{33576830419614384256}{202180439407597359779002275} a^{21} - \frac{110595241762464996469}{67393479802532453259667425} a^{19} + \frac{218371243523453242756}{16046066619650584109444625} a^{17} - \frac{1711053520226177381006}{37440822112518029588704125} a^{15} + \frac{3710581171935455428}{277339423055689108064475} a^{13} - \frac{2687234379156102847964}{4160091345835336620967125} a^{11} + \frac{5887616501728354162816}{1386697115278445540322375} a^{9} - \frac{2382698545381883999296}{154077457253160615591375} a^{7} + \frac{7426451603688192304507}{154077457253160615591375} a^{5} - \frac{4695904475112349667134}{51359152417720205197125} a^{3} - \frac{974655113857922722892}{17119717472573401732375} a$
Class group and class number
not computed
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed ![]() | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{-789}) \), 13.1.330928743953809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{13}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
3 | Data not computed | ||||||
263 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3156.2t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 263 $ | \(\Q(\sqrt{-789}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.263.2t1.a.a | $1$ | $ 263 $ | \(\Q(\sqrt{-263}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 2.37872.26t3.a.f | $2$ | $ 2^{4} \cdot 3^{2} \cdot 263 $ | 26.0.3081633091018542230201228818947762663997833216.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.263.13t2.a.c | $2$ | $ 263 $ | 13.1.330928743953809.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.263.13t2.a.b | $2$ | $ 263 $ | 13.1.330928743953809.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.37872.26t3.a.e | $2$ | $ 2^{4} \cdot 3^{2} \cdot 263 $ | 26.0.3081633091018542230201228818947762663997833216.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.37872.26t3.a.b | $2$ | $ 2^{4} \cdot 3^{2} \cdot 263 $ | 26.0.3081633091018542230201228818947762663997833216.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.263.13t2.a.a | $2$ | $ 263 $ | 13.1.330928743953809.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.263.13t2.a.d | $2$ | $ 263 $ | 13.1.330928743953809.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.263.13t2.a.f | $2$ | $ 263 $ | 13.1.330928743953809.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.37872.26t3.a.d | $2$ | $ 2^{4} \cdot 3^{2} \cdot 263 $ | 26.0.3081633091018542230201228818947762663997833216.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.37872.26t3.a.c | $2$ | $ 2^{4} \cdot 3^{2} \cdot 263 $ | 26.0.3081633091018542230201228818947762663997833216.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |
* | 2.263.13t2.a.e | $2$ | $ 263 $ | 13.1.330928743953809.1 | $D_{13}$ (as 13T2) | $1$ | $0$ |
* | 2.37872.26t3.a.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 263 $ | 26.0.3081633091018542230201228818947762663997833216.1 | $D_{26}$ (as 26T3) | $1$ | $0$ |