Normalized defining polynomial
\( x^{26} - x^{25} + 2 x^{24} + 48 x^{23} - 41 x^{22} + 75 x^{21} + 827 x^{20} - 597 x^{19} + 990 x^{18} + 6414 x^{17} - 3755 x^{16} + 5397 x^{15} + 23537 x^{14} - 10353 x^{13} + 15676 x^{12} + 35758 x^{11} - 6997 x^{10} + 39165 x^{9} + 14468 x^{8} + 8338 x^{7} + 43270 x^{6} - 25107 x^{5} + 25775 x^{4} - 10788 x^{3} - 8746 x^{2} + 10048 x + 4289 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-275852727404510985186163978883510976421015681999\)\(\medspace = -\,79^{25}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $66.78$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $79$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $26$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(79\) | ||
Dirichlet character group: | $\lbrace$$\chi_{79}(64,·)$, $\chi_{79}(1,·)$, $\chi_{79}(67,·)$, $\chi_{79}(69,·)$, $\chi_{79}(65,·)$, $\chi_{79}(8,·)$, $\chi_{79}(10,·)$, $\chi_{79}(12,·)$, $\chi_{79}(14,·)$, $\chi_{79}(15,·)$, $\chi_{79}(17,·)$, $\chi_{79}(18,·)$, $\chi_{79}(21,·)$, $\chi_{79}(22,·)$, $\chi_{79}(27,·)$, $\chi_{79}(33,·)$, $\chi_{79}(38,·)$, $\chi_{79}(41,·)$, $\chi_{79}(71,·)$, $\chi_{79}(78,·)$, $\chi_{79}(46,·)$, $\chi_{79}(52,·)$, $\chi_{79}(57,·)$, $\chi_{79}(58,·)$, $\chi_{79}(61,·)$, $\chi_{79}(62,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} - \frac{7}{23} a^{15} - \frac{8}{23} a^{14} - \frac{2}{23} a^{13} - \frac{10}{23} a^{12} - \frac{2}{23} a^{11} - \frac{9}{23} a^{10} - \frac{1}{23} a^{9} + \frac{5}{23} a^{8} - \frac{2}{23} a^{7} + \frac{9}{23} a^{6} - \frac{4}{23} a^{5} + \frac{4}{23} a^{4} - \frac{4}{23} a^{2} - \frac{6}{23} a - \frac{10}{23}$, $\frac{1}{23} a^{18} - \frac{7}{23} a^{16} - \frac{8}{23} a^{15} - \frac{2}{23} a^{14} - \frac{10}{23} a^{13} - \frac{2}{23} a^{12} - \frac{9}{23} a^{11} - \frac{1}{23} a^{10} + \frac{5}{23} a^{9} - \frac{2}{23} a^{8} + \frac{9}{23} a^{7} - \frac{4}{23} a^{6} + \frac{4}{23} a^{5} - \frac{4}{23} a^{3} - \frac{6}{23} a^{2} - \frac{10}{23} a$, $\frac{1}{23} a^{19} - \frac{8}{23} a^{16} - \frac{5}{23} a^{15} + \frac{3}{23} a^{14} + \frac{7}{23} a^{13} - \frac{10}{23} a^{12} + \frac{8}{23} a^{11} + \frac{11}{23} a^{10} - \frac{9}{23} a^{9} - \frac{2}{23} a^{8} + \frac{5}{23} a^{7} - \frac{2}{23} a^{6} - \frac{5}{23} a^{5} + \frac{1}{23} a^{4} - \frac{6}{23} a^{3} + \frac{8}{23} a^{2} + \frac{4}{23} a - \frac{1}{23}$, $\frac{1}{23} a^{20} - \frac{5}{23} a^{16} - \frac{7}{23} a^{15} - \frac{11}{23} a^{14} - \frac{3}{23} a^{13} - \frac{3}{23} a^{12} - \frac{5}{23} a^{11} + \frac{11}{23} a^{10} - \frac{10}{23} a^{9} - \frac{1}{23} a^{8} + \frac{5}{23} a^{7} - \frac{2}{23} a^{6} - \frac{8}{23} a^{5} + \frac{3}{23} a^{4} + \frac{8}{23} a^{3} - \frac{5}{23} a^{2} - \frac{3}{23} a - \frac{11}{23}$, $\frac{1}{23} a^{21} - \frac{7}{23} a^{16} + \frac{3}{23} a^{14} + \frac{10}{23} a^{13} - \frac{9}{23} a^{12} + \frac{1}{23} a^{11} - \frac{9}{23} a^{10} - \frac{6}{23} a^{9} + \frac{7}{23} a^{8} + \frac{11}{23} a^{7} - \frac{9}{23} a^{6} + \frac{6}{23} a^{5} + \frac{5}{23} a^{4} - \frac{5}{23} a^{3} + \frac{5}{23} a - \frac{4}{23}$, $\frac{1}{23} a^{22} - \frac{1}{23}$, $\frac{1}{23} a^{23} - \frac{1}{23} a$, $\frac{1}{529} a^{24} - \frac{3}{529} a^{23} - \frac{8}{529} a^{22} - \frac{3}{529} a^{21} + \frac{1}{529} a^{20} + \frac{6}{529} a^{19} - \frac{6}{529} a^{18} + \frac{9}{529} a^{17} + \frac{217}{529} a^{16} + \frac{201}{529} a^{15} - \frac{246}{529} a^{14} - \frac{202}{529} a^{13} + \frac{70}{529} a^{12} + \frac{99}{529} a^{11} + \frac{190}{529} a^{10} + \frac{260}{529} a^{9} + \frac{2}{23} a^{8} + \frac{206}{529} a^{7} - \frac{250}{529} a^{6} - \frac{93}{529} a^{5} - \frac{177}{529} a^{4} - \frac{242}{529} a^{3} + \frac{19}{529} a^{2} + \frac{199}{529} a + \frac{235}{529}$, $\frac{1}{36432810425294767351714415418299842796503405351772669} a^{25} - \frac{17839857856621827873061919016957308631878955352041}{36432810425294767351714415418299842796503405351772669} a^{24} + \frac{440145998647082491741624978150882103033417228436444}{36432810425294767351714415418299842796503405351772669} a^{23} - \frac{7129346072081157614126464182607660028638853592258}{36432810425294767351714415418299842796503405351772669} a^{22} - \frac{633417308567108127494434948438699468463256059499958}{36432810425294767351714415418299842796503405351772669} a^{21} - \frac{427112901546216272995042014816696727630945672693889}{36432810425294767351714415418299842796503405351772669} a^{20} + \frac{447798965901514624635926441593782881627315954212004}{36432810425294767351714415418299842796503405351772669} a^{19} - \frac{439394605514417214247918863342591219200972610033569}{36432810425294767351714415418299842796503405351772669} a^{18} + \frac{491109329063796105314881888138274513552389182356292}{36432810425294767351714415418299842796503405351772669} a^{17} + \frac{8724560591415570329195561717309076957811567098896631}{36432810425294767351714415418299842796503405351772669} a^{16} + \frac{7071518812524006663579908388735472057691166638022678}{36432810425294767351714415418299842796503405351772669} a^{15} - \frac{7339095751398517139537744989791783804973113754123829}{36432810425294767351714415418299842796503405351772669} a^{14} - \frac{9292828366718200822278380328065407988290083669738782}{36432810425294767351714415418299842796503405351772669} a^{13} + \frac{16907556580108194542622990709052254475173712866041237}{36432810425294767351714415418299842796503405351772669} a^{12} + \frac{15450502886024479287848744756723832895361767226614390}{36432810425294767351714415418299842796503405351772669} a^{11} + \frac{9215466889122503292219423966592992253708970192713592}{36432810425294767351714415418299842796503405351772669} a^{10} - \frac{60603329868202371124991734801813227732741566021967}{201286245443617499180742626620441120422670747799849} a^{9} + \frac{11795635643733095308586680141355747676319555391573418}{36432810425294767351714415418299842796503405351772669} a^{8} - \frac{10219699546671010514304307820280883967793345974041303}{36432810425294767351714415418299842796503405351772669} a^{7} + \frac{9119792296009641541272570166263836823925601506926547}{36432810425294767351714415418299842796503405351772669} a^{6} - \frac{4449323217715615151074512330648758920635445866560267}{36432810425294767351714415418299842796503405351772669} a^{5} - \frac{1105232197434425023488823310473678647973298608928299}{36432810425294767351714415418299842796503405351772669} a^{4} + \frac{16138364221509949153371248887137094214361821414353125}{36432810425294767351714415418299842796503405351772669} a^{3} - \frac{2111627529911607880355394610566290018377151170188012}{36432810425294767351714415418299842796503405351772669} a^{2} + \frac{9406461793776214260150072643657474835663067760117159}{36432810425294767351714415418299842796503405351772669} a + \frac{2014414019775677796445492827843631830157997776164}{8494476667123983994337704690673780087783493903421}$
Class group and class number
$C_{265}$, which has order $265$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 57529828940.82975 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 26 |
The 26 conjugacy class representatives for $C_{26}$ |
Character table for $C_{26}$ is not computed |
Intermediate fields
\(\Q(\sqrt{-79}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | $26$ | $26$ | $26$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
79 | Data not computed |