Properties

Label 26.0.24893336381...6875.1
Degree $26$
Signature $[0, 13]$
Discriminant $-\,3^{13}\cdot 5^{13}\cdot 53^{25}$
Root discriminant $176.20$
Ramified primes $3, 5, 53$
Class number Not computed
Class group Not computed
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1140470028259, 1756646750735, 1728793845279, -1442009661016, 788591474591, -177883731071, 296287639624, -204155575160, 87181434018, -64903945574, 18513107422, -10923776128, 6589281884, -1643661436, 1512632896, -192097412, 188306247, -13959401, 13558779, -592696, 578049, -14457, 14268, -188, 187, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 187*x^24 - 188*x^23 + 14268*x^22 - 14457*x^21 + 578049*x^20 - 592696*x^19 + 13558779*x^18 - 13959401*x^17 + 188306247*x^16 - 192097412*x^15 + 1512632896*x^14 - 1643661436*x^13 + 6589281884*x^12 - 10923776128*x^11 + 18513107422*x^10 - 64903945574*x^9 + 87181434018*x^8 - 204155575160*x^7 + 296287639624*x^6 - 177883731071*x^5 + 788591474591*x^4 - 1442009661016*x^3 + 1728793845279*x^2 + 1756646750735*x + 1140470028259)
 
gp: K = bnfinit(x^26 - x^25 + 187*x^24 - 188*x^23 + 14268*x^22 - 14457*x^21 + 578049*x^20 - 592696*x^19 + 13558779*x^18 - 13959401*x^17 + 188306247*x^16 - 192097412*x^15 + 1512632896*x^14 - 1643661436*x^13 + 6589281884*x^12 - 10923776128*x^11 + 18513107422*x^10 - 64903945574*x^9 + 87181434018*x^8 - 204155575160*x^7 + 296287639624*x^6 - 177883731071*x^5 + 788591474591*x^4 - 1442009661016*x^3 + 1728793845279*x^2 + 1756646750735*x + 1140470028259, 1)
 

Normalized defining polynomial

\( x^{26} - x^{25} + 187 x^{24} - 188 x^{23} + 14268 x^{22} - 14457 x^{21} + 578049 x^{20} - 592696 x^{19} + 13558779 x^{18} - 13959401 x^{17} + 188306247 x^{16} - 192097412 x^{15} + 1512632896 x^{14} - 1643661436 x^{13} + 6589281884 x^{12} - 10923776128 x^{11} + 18513107422 x^{10} - 64903945574 x^{9} + 87181434018 x^{8} - 204155575160 x^{7} + 296287639624 x^{6} - 177883731071 x^{5} + 788591474591 x^{4} - 1442009661016 x^{3} + 1728793845279 x^{2} + 1756646750735 x + 1140470028259 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $26$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 13]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-24893336381914519275474376221073664531912183161424560546875=-\,3^{13}\cdot 5^{13}\cdot 53^{25}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $176.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(795=3\cdot 5\cdot 53\)
Dirichlet character group:    $\lbrace$$\chi_{795}(256,·)$, $\chi_{795}(1,·)$, $\chi_{795}(331,·)$, $\chi_{795}(646,·)$, $\chi_{795}(449,·)$, $\chi_{795}(329,·)$, $\chi_{795}(779,·)$, $\chi_{795}(269,·)$, $\chi_{795}(526,·)$, $\chi_{795}(749,·)$, $\chi_{795}(16,·)$, $\chi_{795}(466,·)$, $\chi_{795}(149,·)$, $\chi_{795}(121,·)$, $\chi_{795}(794,·)$, $\chi_{795}(539,·)$, $\chi_{795}(346,·)$, $\chi_{795}(29,·)$, $\chi_{795}(736,·)$, $\chi_{795}(464,·)$, $\chi_{795}(674,·)$, $\chi_{795}(301,·)$, $\chi_{795}(46,·)$, $\chi_{795}(494,·)$, $\chi_{795}(59,·)$, $\chi_{795}(766,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{107} a^{22} + \frac{15}{107} a^{21} + \frac{5}{107} a^{20} - \frac{5}{107} a^{19} - \frac{8}{107} a^{18} + \frac{41}{107} a^{17} - \frac{51}{107} a^{16} + \frac{39}{107} a^{15} - \frac{30}{107} a^{14} + \frac{1}{107} a^{13} + \frac{25}{107} a^{12} - \frac{2}{107} a^{11} - \frac{50}{107} a^{10} - \frac{17}{107} a^{9} - \frac{32}{107} a^{8} + \frac{6}{107} a^{7} + \frac{38}{107} a^{6} - \frac{30}{107} a^{5} + \frac{40}{107} a^{4} - \frac{29}{107} a^{3} - \frac{26}{107} a^{2} + \frac{27}{107} a + \frac{27}{107}$, $\frac{1}{107} a^{23} - \frac{6}{107} a^{21} + \frac{27}{107} a^{20} - \frac{40}{107} a^{19} - \frac{53}{107} a^{18} - \frac{24}{107} a^{17} - \frac{52}{107} a^{16} + \frac{27}{107} a^{15} + \frac{23}{107} a^{14} + \frac{10}{107} a^{13} + \frac{51}{107} a^{12} - \frac{20}{107} a^{11} - \frac{16}{107} a^{10} + \frac{9}{107} a^{9} - \frac{49}{107} a^{8} - \frac{52}{107} a^{7} + \frac{42}{107} a^{6} - \frac{45}{107} a^{5} + \frac{13}{107} a^{4} - \frac{19}{107} a^{3} - \frac{11}{107} a^{2} + \frac{50}{107} a + \frac{23}{107}$, $\frac{1}{107} a^{24} + \frac{10}{107} a^{21} - \frac{10}{107} a^{20} + \frac{24}{107} a^{19} + \frac{35}{107} a^{18} - \frac{20}{107} a^{17} + \frac{42}{107} a^{16} + \frac{43}{107} a^{15} + \frac{44}{107} a^{14} - \frac{50}{107} a^{13} + \frac{23}{107} a^{12} - \frac{28}{107} a^{11} + \frac{30}{107} a^{10} - \frac{44}{107} a^{9} - \frac{30}{107} a^{8} - \frac{29}{107} a^{7} - \frac{31}{107} a^{6} + \frac{47}{107} a^{5} + \frac{7}{107} a^{4} + \frac{29}{107} a^{3} + \frac{1}{107} a^{2} - \frac{29}{107} a - \frac{52}{107}$, $\frac{1}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{25} + \frac{37046697581470926352380020534358821469671882109137262472374385268190839639736926941670469986697058795046511766169572472813717538765159741647865187574074995183332}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{24} - \frac{37764463076106303336388647400085299476660253860718379387573510637903623916747921521395883016640375528944953482917215014553622345609721718547897370275810101132139}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{23} - \frac{17571687201134098458726419068573712941365297484256163597730178743147460462195097520804251654912803923561603123817722534249008267446229846530027072460357172870352}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{22} - \frac{4580395026337550682032666486576520405741201632383414064604735238151497912375733036400707502622426487746173826335421757852286782894217164481225244064820233210876875}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{21} + \frac{988656222400945520771312644657995105782664862975588026549395781704276866043916843626496675514694296097424306951853007073045220437923969677738462503984041006629685}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{20} + \frac{1969834036512208396966677767954456060469595986210721200491256273952231105790024671996890680878164961995767730865228287710261004651528551779524655091127634831228222}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{19} + \frac{4591932384826304169477283385588406348206859730960990449226057615030819003747286823052075191769628276633849999835854021507908913007690530204984736373233979912639272}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{18} + \frac{1627782718300733230752395394642214749943838264425590902473263779090254668513981463789483859646156990690967511361286052441168345900810495395538798134495949946760339}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{17} + \frac{4318433877634809785669281733476325646258736073079730852316079305125549063788126275351655040736910206063474428836927230118001283121557685799750162472943812386648144}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{16} - \frac{982460151993559808975612031160736337159474244831574459447134003872093941483517876669938852335227501431182593937249219924049654276069556830136695476566099278781936}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{15} - \frac{895868623310436801018428317855464908802442549359383923217635509158190787104969713649447338187620282575880992558639254109526601194579262325801627584701184291529192}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{14} - \frac{3861362142216993738827367600713856348679829650773810233032932899620779121449615807239386522589253511844556870389025607114159777460238631209320209126982290273888414}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{13} + \frac{1998661385324355742787666712938492626670366090157857746728687511362355363792402889828753412914182029441840819199917416933997535543262403807816670188531151951896656}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{12} + \frac{4571889323538876068023217400501020668945646256013157651744554177329848729987345977875379017096835163011434167550090309977172345872377108292540777888593520206603949}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{11} - \frac{7198749724999725849117650096311641385903583809347533813533174716277693217998045860331802634653209902788781716223499110947125919945289408819420920590477759773438}{89049209688276406235645588614623794643660761861223303094273259420172764184198450533178377462102408212018841138184855288894229078950326650665144643130654528812741} a^{10} - \frac{3483981979272935770116518727176787486430495310600400231478071281339782777662949453785853029363644726124772085170582566780095958844397294505397238798963426042548}{30057619673960805890265230226387211441235651479971272653272046555074087595297268791956108480898920122037905368409399103822342307405946219625143459984164146949411} a^{9} + \frac{2234490668135939299286961484481533073401539666924269185119990433436765862730814125609988352664832448038808830588426066407269288838362729043998393706935671362468574}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{8} + \frac{20176855465433162579355157886714609322972472933116151610721591500686929344700290951545836461099892038586865930994543679396673213046071574783036238755657398871138}{45157656097846329228502739250069886383278206251899968867712032028239269041275991502607044494999799425052208539269097231808921855202298348915499890118388789492717} a^{7} - \frac{812865810209013405067414897540797205809636928566070740793126783012946430131990638488565486294604605386323169619277568661962446374423098531597099363087003664360832}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{6} + \frac{15829497873670461328916942195563666106936898047004468549945434390363966916844243306322923916992320157170636025063228634711650461750008151490590090596990863868590}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{5} - \frac{3954229119384957719061330274769925481245151142910403696976578711110642763546070217244556178143377303794238412656881842408124823908116064568507332920425599707843085}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{4} - \frac{4218681292505097405839961639970115584373619316595498070396916464334698504455501434632002942168162948017917360024034292400076788736294090614883953487766653784310197}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{3} + \frac{1017887691011820681770457815148771360544453058430179792456624106930999780482058493858331261702403343821345625318759511599511387545511735956359090774707910998547232}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a^{2} + \frac{2632070253989474809476039104625004072825280840040860109396991442782989043926628390955811252002394464085979885641187364727347041539514658122403270682047075258043787}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287} a + \frac{746596073669161788540344065907303513625464837958515916782123131141084673587412666600349239279837379001545845407422911599861137410114343167918887413578031809938683}{9528265436645575467214077981764746026871701519150893431087238757958485767709234207050086388444957678686016001785779515911682511447684951621170476814980034582963287}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{26}$ (as 26T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-795}) \), 13.13.491258904256726154641.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $26$ R R $26$ $26$ $26$ ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ $26$ $26$ $26$ ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ $26$ ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ R $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
53Data not computed