Normalized defining polynomial
\( x^{26} - x^{25} + 28 x^{24} - 29 x^{23} + 276 x^{22} - 306 x^{21} + 1038 x^{20} - 1375 x^{19} + 54 x^{18} - 1586 x^{17} - 8106 x^{16} - 449 x^{15} - 5336 x^{14} - 49021 x^{13} + 97058 x^{12} - 111859 x^{11} + 338650 x^{10} + 82909 x^{9} + 16023 x^{8} + 521830 x^{7} - 124280 x^{6} - 1299383 x^{5} + 3115247 x^{4} - 2524927 x^{3} + 1035234 x^{2} + 2787416 x + 1009861 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20392621164064374190468609000303545984542460445839=-\,3^{13}\cdot 53^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(159=3\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{159}(1,·)$, $\chi_{159}(130,·)$, $\chi_{159}(131,·)$, $\chi_{159}(10,·)$, $\chi_{159}(11,·)$, $\chi_{159}(13,·)$, $\chi_{159}(142,·)$, $\chi_{159}(143,·)$, $\chi_{159}(16,·)$, $\chi_{159}(17,·)$, $\chi_{159}(146,·)$, $\chi_{159}(148,·)$, $\chi_{159}(149,·)$, $\chi_{159}(28,·)$, $\chi_{159}(29,·)$, $\chi_{159}(158,·)$, $\chi_{159}(97,·)$, $\chi_{159}(100,·)$, $\chi_{159}(38,·)$, $\chi_{159}(113,·)$, $\chi_{159}(110,·)$, $\chi_{159}(46,·)$, $\chi_{159}(49,·)$, $\chi_{159}(121,·)$, $\chi_{159}(59,·)$, $\chi_{159}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} - \frac{7}{23} a^{16} - \frac{9}{23} a^{14} + \frac{9}{23} a^{13} + \frac{2}{23} a^{12} + \frac{1}{23} a^{11} + \frac{11}{23} a^{10} - \frac{3}{23} a^{9} + \frac{3}{23} a^{7} + \frac{11}{23} a^{6} + \frac{6}{23} a^{5} + \frac{7}{23} a^{4} - \frac{8}{23} a^{3} + \frac{8}{23} a^{2} - \frac{9}{23} a$, $\frac{1}{23} a^{18} - \frac{3}{23} a^{16} - \frac{9}{23} a^{15} - \frac{8}{23} a^{14} - \frac{4}{23} a^{13} - \frac{8}{23} a^{12} - \frac{5}{23} a^{11} + \frac{5}{23} a^{10} + \frac{2}{23} a^{9} + \frac{3}{23} a^{8} + \frac{9}{23} a^{7} - \frac{9}{23} a^{6} + \frac{3}{23} a^{5} - \frac{5}{23} a^{4} - \frac{2}{23} a^{3} + \frac{1}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{23} a^{19} - \frac{7}{23} a^{16} - \frac{8}{23} a^{15} - \frac{8}{23} a^{14} - \frac{4}{23} a^{13} + \frac{1}{23} a^{12} + \frac{8}{23} a^{11} - \frac{11}{23} a^{10} - \frac{6}{23} a^{9} + \frac{9}{23} a^{8} - \frac{10}{23} a^{6} - \frac{10}{23} a^{5} - \frac{4}{23} a^{4} + \frac{7}{23} a^{2} - \frac{4}{23} a$, $\frac{1}{23} a^{20} - \frac{11}{23} a^{16} - \frac{8}{23} a^{15} + \frac{2}{23} a^{14} - \frac{5}{23} a^{13} - \frac{1}{23} a^{12} - \frac{4}{23} a^{11} + \frac{2}{23} a^{10} + \frac{11}{23} a^{9} + \frac{11}{23} a^{7} - \frac{2}{23} a^{6} - \frac{8}{23} a^{5} + \frac{3}{23} a^{4} - \frac{3}{23} a^{3} + \frac{6}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{23} a^{21} + \frac{7}{23} a^{16} + \frac{2}{23} a^{15} + \frac{11}{23} a^{14} + \frac{6}{23} a^{13} - \frac{5}{23} a^{12} - \frac{10}{23} a^{11} - \frac{6}{23} a^{10} - \frac{10}{23} a^{9} + \frac{11}{23} a^{8} + \frac{8}{23} a^{7} - \frac{2}{23} a^{6} + \frac{5}{23} a^{4} + \frac{10}{23} a^{3} + \frac{2}{23} a^{2} - \frac{7}{23} a$, $\frac{1}{529} a^{22} - \frac{6}{529} a^{21} - \frac{3}{529} a^{20} - \frac{2}{529} a^{19} - \frac{10}{529} a^{18} + \frac{9}{529} a^{17} + \frac{10}{23} a^{16} + \frac{129}{529} a^{15} - \frac{57}{529} a^{14} - \frac{52}{529} a^{13} - \frac{125}{529} a^{12} + \frac{240}{529} a^{11} + \frac{106}{529} a^{10} - \frac{252}{529} a^{9} - \frac{152}{529} a^{8} + \frac{224}{529} a^{7} - \frac{218}{529} a^{6} - \frac{61}{529} a^{5} - \frac{49}{529} a^{4} + \frac{162}{529} a^{3} + \frac{24}{529} a^{2} - \frac{6}{23} a$, $\frac{1}{213080671} a^{23} - \frac{189827}{213080671} a^{22} - \frac{3711800}{213080671} a^{21} + \frac{4193456}{213080671} a^{20} + \frac{2873476}{213080671} a^{19} + \frac{1942448}{213080671} a^{18} - \frac{4544956}{213080671} a^{17} + \frac{14678292}{213080671} a^{16} + \frac{81751046}{213080671} a^{15} - \frac{350141}{2567237} a^{14} + \frac{26757052}{213080671} a^{13} - \frac{86861356}{213080671} a^{12} - \frac{72063031}{213080671} a^{11} + \frac{1371946}{213080671} a^{10} + \frac{50412350}{213080671} a^{9} + \frac{51744157}{213080671} a^{8} - \frac{104107314}{213080671} a^{7} - \frac{92193906}{213080671} a^{6} + \frac{33461439}{213080671} a^{5} + \frac{3295056}{213080671} a^{4} + \frac{45858411}{213080671} a^{3} - \frac{72830905}{213080671} a^{2} + \frac{3328155}{9264377} a - \frac{15}{211}$, $\frac{1}{153205002449} a^{24} + \frac{71}{153205002449} a^{23} + \frac{129135131}{153205002449} a^{22} - \frac{248551430}{153205002449} a^{21} - \frac{1322217158}{153205002449} a^{20} + \frac{2788879666}{153205002449} a^{19} + \frac{2776157404}{153205002449} a^{18} - \frac{289266543}{153205002449} a^{17} + \frac{8739865390}{153205002449} a^{16} - \frac{34061054298}{153205002449} a^{15} + \frac{26248864633}{153205002449} a^{14} - \frac{67858340302}{153205002449} a^{13} - \frac{69170912016}{153205002449} a^{12} + \frac{29650695668}{153205002449} a^{11} - \frac{48573255029}{153205002449} a^{10} + \frac{2352697363}{6661087063} a^{9} + \frac{36258471776}{153205002449} a^{8} - \frac{52323385590}{153205002449} a^{7} + \frac{55798811353}{153205002449} a^{6} - \frac{1638331583}{153205002449} a^{5} - \frac{2171559363}{6661087063} a^{4} - \frac{26205620182}{153205002449} a^{3} - \frac{286849956}{726090059} a^{2} + \frac{2671328397}{6661087063} a + \frac{6782}{151709}$, $\frac{1}{15231797105456104875423888713872769022305639001007425847666699} a^{25} - \frac{46544898421568630390550972902105534199177150622371}{15231797105456104875423888713872769022305639001007425847666699} a^{24} - \frac{23104546994512473114775046026986035258753252327424641}{15231797105456104875423888713872769022305639001007425847666699} a^{23} + \frac{2740402821755227593995639384624220147031682027514116992623}{15231797105456104875423888713872769022305639001007425847666699} a^{22} - \frac{238960698280809411900407753447879712888599946471841350142308}{15231797105456104875423888713872769022305639001007425847666699} a^{21} - \frac{120149735643332029121083935585527982566206111582921727265073}{15231797105456104875423888713872769022305639001007425847666699} a^{20} - \frac{51843160939304540261822254388732025580731315908264544759265}{15231797105456104875423888713872769022305639001007425847666699} a^{19} + \frac{71153256749970884708274762885818174168130497657166908856614}{15231797105456104875423888713872769022305639001007425847666699} a^{18} + \frac{10203300454692560391589348892224319064518529346534446954252}{662252048063308907627125596255337783578506043522061993376813} a^{17} - \frac{6067206024896050939767606576392054557467143874138194450265356}{15231797105456104875423888713872769022305639001007425847666699} a^{16} + \frac{5638772821864327146186834799971076147580363699041945524874901}{15231797105456104875423888713872769022305639001007425847666699} a^{15} - \frac{1381010253631074934919935830310293806451988752064867540687910}{15231797105456104875423888713872769022305639001007425847666699} a^{14} + \frac{7600913793141229004471425311473117131591282711480220806840890}{15231797105456104875423888713872769022305639001007425847666699} a^{13} + \frac{3209316491364858584771535528433525081340128830772528228447066}{15231797105456104875423888713872769022305639001007425847666699} a^{12} - \frac{6375257478983057065209469069200932648100965097042042928745942}{15231797105456104875423888713872769022305639001007425847666699} a^{11} - \frac{4083497493748572066573593146090133647586051374185928541711058}{15231797105456104875423888713872769022305639001007425847666699} a^{10} - \frac{2780707981138620193338460683112454022832844568770437935099398}{15231797105456104875423888713872769022305639001007425847666699} a^{9} - \frac{6344650733660253693748057219928878209960257601246913839550107}{15231797105456104875423888713872769022305639001007425847666699} a^{8} + \frac{7224558374699197549023977309190560975907177181027873607230358}{15231797105456104875423888713872769022305639001007425847666699} a^{7} + \frac{6439822713280447118217241625761318287254829509262308521867383}{15231797105456104875423888713872769022305639001007425847666699} a^{6} - \frac{340259318439859409919314837416901991663905104244218875727608}{15231797105456104875423888713872769022305639001007425847666699} a^{5} - \frac{4425051638002939190380793423142761136815867515979329434379234}{15231797105456104875423888713872769022305639001007425847666699} a^{4} - \frac{5826976341257916410225734615968250899435208349865910954996756}{15231797105456104875423888713872769022305639001007425847666699} a^{3} - \frac{2294628538210365205157874423479492307815647687418506758248165}{15231797105456104875423888713872769022305639001007425847666699} a^{2} - \frac{28914241997847419216883179817754312221487454219730851279394}{662252048063308907627125596255337783578506043522061993376813} a - \frac{6712370705134500962820419094284859748318092869609596089}{15083063021005965054026136977141179847826224600224610959}$
Class group and class number
$C_{32510}$, which has order $32510$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5382739421.971964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-159}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | R | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | R | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 53 | Data not computed | ||||||