Normalized defining polynomial
\( x^{26} - 2 x^{25} - 45 x^{24} + 178 x^{23} + 768 x^{22} - 5448 x^{21} + 801 x^{20} + 65886 x^{19} - 134835 x^{18} - 349218 x^{17} + 1833359 x^{16} - 1872300 x^{15} - 4196097 x^{14} + 11424264 x^{13} + 3723051 x^{12} - 71922706 x^{11} + 268110160 x^{10} - 834583714 x^{9} + 2196377085 x^{8} - 4640948852 x^{7} + 8189022689 x^{6} - 12586842022 x^{5} + 17351590713 x^{4} - 20853231606 x^{3} + 21481183702 x^{2} - 16566954540 x + 8027125537 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1919641021107487828653877081110544587155912070949008048128=-\,2^{39}\cdot 79^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $159.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(632=2^{3}\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{632}(1,·)$, $\chi_{632}(259,·)$, $\chi_{632}(97,·)$, $\chi_{632}(179,·)$, $\chi_{632}(65,·)$, $\chi_{632}(275,·)$, $\chi_{632}(457,·)$, $\chi_{632}(459,·)$, $\chi_{632}(337,·)$, $\chi_{632}(403,·)$, $\chi_{632}(225,·)$, $\chi_{632}(89,·)$, $\chi_{632}(539,·)$, $\chi_{632}(289,·)$, $\chi_{632}(67,·)$, $\chi_{632}(283,·)$, $\chi_{632}(131,·)$, $\chi_{632}(561,·)$, $\chi_{632}(617,·)$, $\chi_{632}(299,·)$, $\chi_{632}(433,·)$, $\chi_{632}(563,·)$, $\chi_{632}(417,·)$, $\chi_{632}(441,·)$, $\chi_{632}(571,·)$, $\chi_{632}(475,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{23} a^{20} + \frac{1}{23} a^{19} + \frac{6}{23} a^{18} + \frac{1}{23} a^{17} + \frac{8}{23} a^{16} - \frac{5}{23} a^{15} + \frac{2}{23} a^{14} - \frac{10}{23} a^{13} + \frac{10}{23} a^{12} + \frac{10}{23} a^{11} - \frac{5}{23} a^{10} + \frac{5}{23} a^{8} - \frac{11}{23} a^{7} + \frac{2}{23} a^{6} + \frac{7}{23} a^{5} - \frac{11}{23} a^{4} + \frac{6}{23} a^{3} - \frac{9}{23} a^{2} + \frac{3}{23} a - \frac{6}{23}$, $\frac{1}{23} a^{21} + \frac{5}{23} a^{19} - \frac{5}{23} a^{18} + \frac{7}{23} a^{17} + \frac{10}{23} a^{16} + \frac{7}{23} a^{15} + \frac{11}{23} a^{14} - \frac{3}{23} a^{13} + \frac{8}{23} a^{11} + \frac{5}{23} a^{10} + \frac{5}{23} a^{9} + \frac{7}{23} a^{8} - \frac{10}{23} a^{7} + \frac{5}{23} a^{6} + \frac{5}{23} a^{5} - \frac{6}{23} a^{4} + \frac{8}{23} a^{3} - \frac{11}{23} a^{2} - \frac{9}{23} a + \frac{6}{23}$, $\frac{1}{23} a^{22} - \frac{10}{23} a^{19} + \frac{5}{23} a^{17} - \frac{10}{23} a^{16} - \frac{10}{23} a^{15} + \frac{10}{23} a^{14} + \frac{4}{23} a^{13} + \frac{4}{23} a^{12} + \frac{1}{23} a^{11} + \frac{7}{23} a^{10} + \frac{7}{23} a^{9} + \frac{11}{23} a^{8} - \frac{9}{23} a^{7} - \frac{5}{23} a^{6} + \frac{5}{23} a^{5} - \frac{6}{23} a^{4} + \frac{5}{23} a^{3} - \frac{10}{23} a^{2} - \frac{9}{23} a + \frac{7}{23}$, $\frac{1}{23} a^{23} + \frac{10}{23} a^{19} - \frac{4}{23} a^{18} + \frac{1}{23} a^{16} + \frac{6}{23} a^{15} + \frac{1}{23} a^{14} - \frac{4}{23} a^{13} + \frac{9}{23} a^{12} - \frac{8}{23} a^{11} + \frac{3}{23} a^{10} + \frac{11}{23} a^{9} - \frac{5}{23} a^{8} + \frac{2}{23} a^{6} - \frac{5}{23} a^{5} + \frac{10}{23} a^{4} + \frac{4}{23} a^{3} - \frac{7}{23} a^{2} - \frac{9}{23} a + \frac{9}{23}$, $\frac{1}{1253201} a^{24} - \frac{22033}{1253201} a^{23} + \frac{26467}{1253201} a^{22} + \frac{16710}{1253201} a^{21} - \frac{22941}{1253201} a^{20} + \frac{272495}{1253201} a^{19} - \frac{637}{2369} a^{18} + \frac{469626}{1253201} a^{17} + \frac{303}{1253201} a^{16} - \frac{80824}{1253201} a^{15} + \frac{334265}{1253201} a^{14} - \frac{260376}{1253201} a^{13} + \frac{515943}{1253201} a^{12} + \frac{14986}{54487} a^{11} - \frac{383738}{1253201} a^{10} - \frac{461126}{1253201} a^{9} + \frac{130323}{1253201} a^{8} - \frac{46281}{1253201} a^{7} + \frac{430331}{1253201} a^{6} - \frac{104341}{1253201} a^{5} + \frac{89829}{1253201} a^{4} + \frac{518892}{1253201} a^{3} - \frac{10219}{54487} a^{2} - \frac{339893}{1253201} a - \frac{150560}{1253201}$, $\frac{1}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{25} - \frac{7595324819163346999347961278885364799280535574780897176577810649786865785042171778620046582321}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{24} - \frac{306811838768828407593008916301873461138992102232276790556851929333316039599646347432690669181327443}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{23} + \frac{657897696436867790071813261089445435019464831692841922672125314324307994512403424900886621162509}{231034347677722538678921771967486109974054116642348765610620798810585613028870637691357341541966151} a^{22} - \frac{6763386909401044960574464769488344766170371205181466427290440349873139129787681436178041230816262}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{21} - \frac{421633780081353399987483014247799061897828474123819733122311538413399669313522971545850255269801553}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{20} - \frac{8051125443715959060484314157391684200865915444574504032452439557748312393369449225505196562977074555}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{19} + \frac{6156520901523779262523408290999680382665148194578306787183235407803935133577964843627250257317915897}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{18} + \frac{6040660933165420472188292330694107528465814674388496927996407477863710634062692988619246587720941673}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{17} + \frac{1759328217310563034458389471279761462423871555186393584636564064134899403140005120778245576127995983}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{16} + \frac{755880517418436774345676881659567125106368266984653819879631850069732583449506877068679785738098191}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{15} + \frac{136301170708048701309533348643510530741317142846177977763649599996816239875233817109709726666219515}{1034632078730670499301258370115263883796851044093996645995388794673492093129290247052600268644457111} a^{14} - \frac{8276516153227278492088993392950204927888270798758575898302490177261921287210111783288274624080715594}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{13} - \frac{8331589040941780442372897403483367353099185603271810593070864355443795571583382642542079354782369958}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{12} + \frac{5698176803745766066732286944882793640768604200591317656591189390343144774207934647146979581883258000}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{11} - \frac{3912093318032735142843757042744540121732354428415567605727871439289228173838877434548929897772595318}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{10} + \frac{437244015442974661475191564072100364651253993735976634521874802728936872799399407853912845354345083}{1034632078730670499301258370115263883796851044093996645995388794673492093129290247052600268644457111} a^{9} + \frac{10612850118582638646785248602186444428071179747517755001336221129530839080531365663937446064589537844}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{8} + \frac{10774061566850416545037027238733968166309039479544432446049840219239328636533466208705521268794149713}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{7} - \frac{8809975910152536424667301426327703818082253728279106493651893781449835507317211665794173406268359944}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{6} - \frac{5330791028826560831209176804870309283151448973100207516507085101484306526844517083130924700902192573}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{5} - \frac{1688251195649566851744788070934932133093241752614663172413356199173886607820120562737936538468588971}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{4} + \frac{2827802203567039868058336595023459574105417129328695799317538793022543681314530203798640256655837558}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{3} + \frac{9888251975599311491227605029214175636226320892770838447855658274237291806093875727026179354763113241}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a^{2} - \frac{2413120765709046985955024639480014294956930503689959934629198863330199580369511566563977016638444766}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553} a + \frac{9955508482215288316647776146341113092970184716292992119977139764533462828981839175975054646669413124}{23796537810805421483928942512651069327327574014161922857893942277490318141973675682209806178822513553}$
Class group and class number
Not computed
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 79 | Data not computed | ||||||