Normalized defining polynomial
\( x^{26} - 8 x^{25} + 22 x^{24} - 43 x^{23} + 115 x^{22} - 151 x^{21} + 220 x^{20} - 577 x^{19} + 509 x^{18} - 1015 x^{17} + 1547 x^{16} - 884 x^{15} + 2815 x^{14} - 3027 x^{13} + 2341 x^{12} - 3581 x^{11} + 6893 x^{10} + 2193 x^{9} + 12186 x^{8} - 1094 x^{7} + 906 x^{6} - 2074 x^{5} + 14041 x^{4} + 14998 x^{3} + 13037 x^{2} + 4230 x + 1325 \)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-1674969840842867253564530506487708596884007\)\(\medspace = -\,7^{13}\cdot 401^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $42.07$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 401$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{6} + \frac{1}{7}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{35} a^{14} - \frac{2}{35} a^{13} - \frac{1}{35} a^{12} - \frac{1}{5} a^{10} - \frac{9}{35} a^{8} - \frac{2}{7} a^{7} + \frac{2}{35} a^{6} + \frac{2}{5} a^{4} - \frac{6}{35} a^{2} - \frac{2}{35} a - \frac{3}{7}$, $\frac{1}{35} a^{15} - \frac{2}{35} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{9}{35} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{4}{35} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{6}{35} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{7}$, $\frac{1}{35} a^{16} - \frac{2}{35} a^{13} - \frac{2}{35} a^{12} - \frac{2}{5} a^{11} - \frac{9}{35} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{4}{35} a^{7} + \frac{4}{35} a^{6} - \frac{1}{5} a^{5} - \frac{6}{35} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{35} a^{17} - \frac{1}{35} a^{13} - \frac{1}{35} a^{12} - \frac{9}{35} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{9}{35} a^{7} + \frac{2}{35} a^{6} - \frac{6}{35} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{6}{35} a - \frac{3}{7}$, $\frac{1}{35} a^{18} + \frac{2}{35} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{17}{35} a^{7} + \frac{11}{35} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{12}{35} a - \frac{1}{7}$, $\frac{1}{245} a^{19} - \frac{3}{245} a^{18} - \frac{3}{245} a^{17} + \frac{2}{245} a^{16} + \frac{2}{245} a^{14} - \frac{1}{35} a^{13} + \frac{12}{245} a^{12} - \frac{3}{49} a^{11} + \frac{59}{245} a^{10} + \frac{2}{7} a^{9} - \frac{67}{245} a^{8} + \frac{116}{245} a^{7} + \frac{118}{245} a^{6} + \frac{67}{245} a^{5} + \frac{44}{245} a^{4} - \frac{1}{7} a^{3} + \frac{51}{245} a^{2} - \frac{47}{245} a - \frac{24}{49}$, $\frac{1}{245} a^{20} + \frac{2}{245} a^{18} - \frac{1}{245} a^{16} + \frac{2}{245} a^{15} - \frac{1}{245} a^{14} - \frac{9}{245} a^{13} - \frac{1}{35} a^{12} - \frac{1}{5} a^{11} + \frac{16}{245} a^{10} - \frac{53}{245} a^{9} + \frac{13}{245} a^{8} + \frac{74}{245} a^{7} - \frac{104}{245} a^{6} - \frac{6}{35} a^{5} - \frac{8}{245} a^{4} + \frac{93}{245} a^{3} - \frac{18}{49} a^{2} + \frac{33}{245} a - \frac{23}{49}$, $\frac{1}{245} a^{21} - \frac{1}{245} a^{18} - \frac{2}{245} a^{17} - \frac{2}{245} a^{16} - \frac{1}{245} a^{15} + \frac{1}{245} a^{14} + \frac{1}{35} a^{13} - \frac{2}{49} a^{12} - \frac{87}{245} a^{11} + \frac{5}{49} a^{10} - \frac{78}{245} a^{9} - \frac{13}{49} a^{8} + \frac{1}{35} a^{7} + \frac{9}{245} a^{6} + \frac{47}{245} a^{5} + \frac{103}{245} a^{4} - \frac{118}{245} a^{3} - \frac{104}{245} a^{2} + \frac{4}{35} a - \frac{1}{49}$, $\frac{1}{1715} a^{22} - \frac{1}{1715} a^{21} - \frac{3}{1715} a^{20} - \frac{3}{1715} a^{19} + \frac{4}{343} a^{18} - \frac{1}{1715} a^{17} - \frac{1}{245} a^{16} + \frac{3}{1715} a^{15} + \frac{12}{1715} a^{14} - \frac{32}{1715} a^{13} + \frac{5}{343} a^{12} - \frac{481}{1715} a^{11} - \frac{549}{1715} a^{10} - \frac{423}{1715} a^{9} + \frac{447}{1715} a^{8} - \frac{242}{1715} a^{7} - \frac{120}{343} a^{6} - \frac{204}{1715} a^{5} - \frac{292}{1715} a^{4} - \frac{433}{1715} a^{3} - \frac{673}{1715} a^{2} - \frac{94}{1715} a - \frac{127}{343}$, $\frac{1}{8575} a^{23} - \frac{1}{8575} a^{22} - \frac{17}{8575} a^{21} + \frac{11}{8575} a^{20} - \frac{3}{1715} a^{19} - \frac{2}{343} a^{18} - \frac{17}{1225} a^{17} + \frac{9}{1715} a^{16} - \frac{93}{8575} a^{15} + \frac{23}{1715} a^{14} - \frac{297}{8575} a^{13} - \frac{516}{8575} a^{12} + \frac{312}{8575} a^{11} + \frac{1992}{8575} a^{10} - \frac{66}{1715} a^{9} + \frac{2362}{8575} a^{8} + \frac{3824}{8575} a^{7} - \frac{3613}{8575} a^{6} + \frac{674}{8575} a^{5} - \frac{3086}{8575} a^{4} - \frac{2472}{8575} a^{3} - \frac{752}{8575} a^{2} - \frac{813}{1715} a + \frac{11}{49}$, $\frac{1}{317601822756575} a^{24} + \frac{691831426}{63520364551315} a^{23} + \frac{6074319142}{317601822756575} a^{22} + \frac{36213598852}{45371688965225} a^{21} - \frac{298727042784}{317601822756575} a^{20} - \frac{996412588}{870141980155} a^{19} - \frac{3853492857849}{317601822756575} a^{18} - \frac{2432779245714}{317601822756575} a^{17} + \frac{417181185496}{45371688965225} a^{16} + \frac{1342924470702}{317601822756575} a^{15} - \frac{887899463617}{317601822756575} a^{14} + \frac{11529964495762}{317601822756575} a^{13} + \frac{18420318267586}{317601822756575} a^{12} - \frac{90183453766211}{317601822756575} a^{11} + \frac{47965814675602}{317601822756575} a^{10} + \frac{149337225799637}{317601822756575} a^{9} + \frac{11116773618491}{317601822756575} a^{8} - \frac{53476221766474}{317601822756575} a^{7} + \frac{19841719747776}{317601822756575} a^{6} - \frac{129127472608262}{317601822756575} a^{5} + \frac{84434661836202}{317601822756575} a^{4} - \frac{31100940971314}{317601822756575} a^{3} - \frac{81760501521197}{317601822756575} a^{2} + \frac{2338473591047}{9074337793045} a - \frac{1261767400935}{12704072910263}$, $\frac{1}{3681322727571460825} a^{25} - \frac{102}{736264545514292165} a^{24} - \frac{4455789914238}{147252909102858433} a^{23} + \frac{948169752584611}{3681322727571460825} a^{22} + \frac{422994556187694}{736264545514292165} a^{21} + \frac{2804006951923043}{3681322727571460825} a^{20} + \frac{1947900524335946}{3681322727571460825} a^{19} + \frac{41413101700817216}{3681322727571460825} a^{18} - \frac{715831661930562}{147252909102858433} a^{17} - \frac{16839153557640313}{3681322727571460825} a^{16} + \frac{21512838491529629}{3681322727571460825} a^{15} - \frac{35809185018908003}{3681322727571460825} a^{14} - \frac{666859768224242}{10989023067377495} a^{13} - \frac{244570953406469744}{3681322727571460825} a^{12} + \frac{248914747283739543}{3681322727571460825} a^{11} + \frac{701818270132925823}{3681322727571460825} a^{10} - \frac{874157029916885644}{3681322727571460825} a^{9} + \frac{749621252316168962}{3681322727571460825} a^{8} + \frac{352205805577207763}{3681322727571460825} a^{7} + \frac{1262900245952788144}{3681322727571460825} a^{6} - \frac{708156518630675491}{3681322727571460825} a^{5} + \frac{542386315004721933}{3681322727571460825} a^{4} - \frac{30858635349612524}{99495208853282725} a^{3} + \frac{1329485317570882089}{3681322727571460825} a^{2} + \frac{208022044752082188}{736264545514292165} a - \frac{2411577070542585}{147252909102858433}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 193328971319.57028 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{-7}) \), 13.1.489163986649360075249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{13}$ | R | ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
401 | Data not computed |