Normalized defining polynomial
\( x^{26} + 49 x^{24} + 994 x^{22} + 10915 x^{20} + 71324 x^{18} + 287620 x^{16} + 721007 x^{14} + 1111118 x^{12} + 1019820 x^{10} + 521449 x^{8} + 129173 x^{6} + 10874 x^{4} + 236 x^{2} + 1 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-16195738565069746760238624235485184480969630941184=-\,2^{26}\cdot 53^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(212=2^{2}\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{212}(1,·)$, $\chi_{212}(195,·)$, $\chi_{212}(69,·)$, $\chi_{212}(47,·)$, $\chi_{212}(203,·)$, $\chi_{212}(13,·)$, $\chi_{212}(77,·)$, $\chi_{212}(15,·)$, $\chi_{212}(81,·)$, $\chi_{212}(205,·)$, $\chi_{212}(89,·)$, $\chi_{212}(153,·)$, $\chi_{212}(201,·)$, $\chi_{212}(155,·)$, $\chi_{212}(95,·)$, $\chi_{212}(97,·)$, $\chi_{212}(99,·)$, $\chi_{212}(119,·)$, $\chi_{212}(169,·)$, $\chi_{212}(107,·)$, $\chi_{212}(175,·)$, $\chi_{212}(49,·)$, $\chi_{212}(183,·)$, $\chi_{212}(121,·)$, $\chi_{212}(187,·)$, $\chi_{212}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{8}{23} a^{14} - \frac{7}{23} a^{10} - \frac{1}{23} a^{8} - \frac{4}{23} a^{6} + \frac{3}{23} a^{4} - \frac{8}{23} a^{2} - \frac{7}{23}$, $\frac{1}{23} a^{17} - \frac{8}{23} a^{15} - \frac{7}{23} a^{11} - \frac{1}{23} a^{9} - \frac{4}{23} a^{7} + \frac{3}{23} a^{5} - \frac{8}{23} a^{3} - \frac{7}{23} a$, $\frac{1}{23} a^{18} + \frac{5}{23} a^{14} - \frac{7}{23} a^{12} - \frac{11}{23} a^{10} + \frac{11}{23} a^{8} - \frac{6}{23} a^{6} - \frac{7}{23} a^{4} - \frac{2}{23} a^{2} - \frac{10}{23}$, $\frac{1}{23} a^{19} + \frac{5}{23} a^{15} - \frac{7}{23} a^{13} - \frac{11}{23} a^{11} + \frac{11}{23} a^{9} - \frac{6}{23} a^{7} - \frac{7}{23} a^{5} - \frac{2}{23} a^{3} - \frac{10}{23} a$, $\frac{1}{23} a^{20} + \frac{10}{23} a^{14} - \frac{11}{23} a^{12} - \frac{1}{23} a^{8} - \frac{10}{23} a^{6} + \frac{6}{23} a^{4} + \frac{7}{23} a^{2} - \frac{11}{23}$, $\frac{1}{23} a^{21} + \frac{10}{23} a^{15} - \frac{11}{23} a^{13} - \frac{1}{23} a^{9} - \frac{10}{23} a^{7} + \frac{6}{23} a^{5} + \frac{7}{23} a^{3} - \frac{11}{23} a$, $\frac{1}{4698049} a^{22} + \frac{34636}{4698049} a^{20} - \frac{91025}{4698049} a^{18} + \frac{26821}{4698049} a^{16} + \frac{379524}{4698049} a^{14} - \frac{255456}{4698049} a^{12} + \frac{2052906}{4698049} a^{10} + \frac{76757}{4698049} a^{8} + \frac{91766}{204263} a^{6} - \frac{1859271}{4698049} a^{4} + \frac{1415985}{4698049} a^{2} + \frac{2119684}{4698049}$, $\frac{1}{4698049} a^{23} + \frac{34636}{4698049} a^{21} - \frac{91025}{4698049} a^{19} + \frac{26821}{4698049} a^{17} + \frac{379524}{4698049} a^{15} - \frac{255456}{4698049} a^{13} + \frac{2052906}{4698049} a^{11} + \frac{76757}{4698049} a^{9} + \frac{91766}{204263} a^{7} - \frac{1859271}{4698049} a^{5} + \frac{1415985}{4698049} a^{3} + \frac{2119684}{4698049} a$, $\frac{1}{1070793422227} a^{24} + \frac{13278}{1070793422227} a^{22} - \frac{14186684266}{1070793422227} a^{20} - \frac{8086400107}{1070793422227} a^{18} - \frac{2421860596}{1070793422227} a^{16} + \frac{358322083704}{1070793422227} a^{14} - \frac{394474164910}{1070793422227} a^{12} - \frac{207849877869}{1070793422227} a^{10} - \frac{85443923132}{1070793422227} a^{8} + \frac{42726301558}{1070793422227} a^{6} + \frac{316600844179}{1070793422227} a^{4} + \frac{428682709255}{1070793422227} a^{2} - \frac{460404076292}{1070793422227}$, $\frac{1}{1070793422227} a^{25} + \frac{13278}{1070793422227} a^{23} - \frac{14186684266}{1070793422227} a^{21} - \frac{8086400107}{1070793422227} a^{19} - \frac{2421860596}{1070793422227} a^{17} + \frac{358322083704}{1070793422227} a^{15} - \frac{394474164910}{1070793422227} a^{13} - \frac{207849877869}{1070793422227} a^{11} - \frac{85443923132}{1070793422227} a^{9} + \frac{42726301558}{1070793422227} a^{7} + \frac{316600844179}{1070793422227} a^{5} + \frac{428682709255}{1070793422227} a^{3} - \frac{460404076292}{1070793422227} a$
Class group and class number
$C_{14209}$, which has order $14209$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{810188}{4698049} a^{25} - \frac{39731738}{4698049} a^{23} - \frac{806884047}{4698049} a^{21} - \frac{8873772064}{4698049} a^{19} - \frac{58106052589}{4698049} a^{17} - \frac{234977446694}{4698049} a^{15} - \frac{591220114790}{4698049} a^{13} - \frac{915134997367}{4698049} a^{11} - \frac{36668303943}{204263} a^{9} - \frac{431189338643}{4698049} a^{7} - \frac{104790832849}{4698049} a^{5} - \frac{7803798990}{4698049} a^{3} - \frac{4489009}{204263} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5382739421.971964 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 13.13.491258904256726154641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $26$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/13.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/17.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | $26$ | R | $26$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $53$ | 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ |
| 53.13.12.1 | $x^{13} - 53$ | $13$ | $1$ | $12$ | $C_{13}$ | $[\ ]_{13}$ | |