Normalized defining polynomial
\( x^{26} + 158 x^{24} + 10112 x^{22} + 341912 x^{20} + 6687824 x^{18} + 78249184 x^{16} + 550482112 x^{14} + 2272338304 x^{12} + 5158171648 x^{10} + 5745112576 x^{8} + 2970420224 x^{6} + 635357184 x^{4} + 43360256 x^{2} + 647168 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-151651640667491538463656289407733022385317053604971635802112=-\,2^{39}\cdot 79^{25}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $188.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(632=2^{3}\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{632}(1,·)$, $\chi_{632}(97,·)$, $\chi_{632}(453,·)$, $\chi_{632}(65,·)$, $\chi_{632}(457,·)$, $\chi_{632}(333,·)$, $\chi_{632}(417,·)$, $\chi_{632}(337,·)$, $\chi_{632}(89,·)$, $\chi_{632}(157,·)$, $\chi_{632}(69,·)$, $\chi_{632}(289,·)$, $\chi_{632}(229,·)$, $\chi_{632}(373,·)$, $\chi_{632}(357,·)$, $\chi_{632}(561,·)$, $\chi_{632}(617,·)$, $\chi_{632}(225,·)$, $\chi_{632}(173,·)$, $\chi_{632}(93,·)$, $\chi_{632}(433,·)$, $\chi_{632}(565,·)$, $\chi_{632}(349,·)$, $\chi_{632}(441,·)$, $\chi_{632}(61,·)$, $\chi_{632}(501,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{11776} a^{18} - \frac{1}{1472} a^{16} - \frac{9}{2944} a^{14} - \frac{1}{736} a^{12} + \frac{3}{736} a^{10} - \frac{1}{46} a^{8} + \frac{3}{184} a^{6} + \frac{1}{23} a^{4} + \frac{1}{46} a^{2} + \frac{11}{23}$, $\frac{1}{11776} a^{19} - \frac{1}{1472} a^{17} - \frac{9}{2944} a^{15} - \frac{1}{736} a^{13} + \frac{3}{736} a^{11} - \frac{1}{46} a^{9} + \frac{3}{184} a^{7} + \frac{1}{23} a^{5} + \frac{1}{46} a^{3} + \frac{11}{23} a$, $\frac{1}{23552} a^{20} - \frac{1}{2944} a^{16} + \frac{1}{368} a^{14} - \frac{5}{1472} a^{12} + \frac{1}{184} a^{10} - \frac{3}{184} a^{8} - \frac{7}{184} a^{6} - \frac{3}{46} a^{4} - \frac{4}{23} a^{2} - \frac{2}{23}$, $\frac{1}{23552} a^{21} - \frac{1}{2944} a^{17} + \frac{1}{368} a^{15} - \frac{5}{1472} a^{13} + \frac{1}{184} a^{11} - \frac{3}{184} a^{9} - \frac{7}{184} a^{7} - \frac{3}{46} a^{5} - \frac{4}{23} a^{3} - \frac{2}{23} a$, $\frac{1}{4851712} a^{22} + \frac{9}{606464} a^{20} - \frac{15}{1212928} a^{18} - \frac{29}{303232} a^{16} - \frac{1003}{303232} a^{14} + \frac{43}{37904} a^{12} + \frac{153}{37904} a^{10} + \frac{1077}{37904} a^{8} - \frac{321}{9476} a^{6} - \frac{9}{412} a^{4} - \frac{579}{4738} a^{2} - \frac{376}{2369}$, $\frac{1}{4851712} a^{23} + \frac{9}{606464} a^{21} - \frac{15}{1212928} a^{19} - \frac{29}{303232} a^{17} - \frac{1003}{303232} a^{15} + \frac{43}{37904} a^{13} + \frac{153}{37904} a^{11} + \frac{1077}{37904} a^{9} - \frac{321}{9476} a^{7} - \frac{9}{412} a^{5} - \frac{579}{4738} a^{3} - \frac{376}{2369} a$, $\frac{1}{25111325020875477134615321266204672} a^{24} - \frac{486315827438256959474823669}{6277831255218869283653830316551168} a^{22} - \frac{43844547487839189998368036861}{3138915627609434641826915158275584} a^{20} - \frac{2022554303959106354990441651}{392364453451179330228364394784448} a^{18} - \frac{254983886811462153265213927087}{392364453451179330228364394784448} a^{16} + \frac{6870614658931241127043307149}{24522778340698708139272774674028} a^{14} + \frac{955301257030439711981980011407}{196182226725589665114182197392224} a^{12} - \frac{350360693222680941252877495513}{196182226725589665114182197392224} a^{10} - \frac{1043933300859792850022879532401}{49045556681397416278545549348056} a^{8} - \frac{2694598909210971410206000920261}{49045556681397416278545549348056} a^{6} + \frac{1053672378507842663628150126595}{12261389170349354069636387337014} a^{4} + \frac{458013246752429958285289806551}{6130694585174677034818193668507} a^{2} + \frac{383023767409824919122278615787}{6130694585174677034818193668507}$, $\frac{1}{25111325020875477134615321266204672} a^{25} - \frac{486315827438256959474823669}{6277831255218869283653830316551168} a^{23} - \frac{43844547487839189998368036861}{3138915627609434641826915158275584} a^{21} - \frac{2022554303959106354990441651}{392364453451179330228364394784448} a^{19} - \frac{254983886811462153265213927087}{392364453451179330228364394784448} a^{17} + \frac{6870614658931241127043307149}{24522778340698708139272774674028} a^{15} + \frac{955301257030439711981980011407}{196182226725589665114182197392224} a^{13} - \frac{350360693222680941252877495513}{196182226725589665114182197392224} a^{11} - \frac{1043933300859792850022879532401}{49045556681397416278545549348056} a^{9} - \frac{2694598909210971410206000920261}{49045556681397416278545549348056} a^{7} + \frac{1053672378507842663628150126595}{12261389170349354069636387337014} a^{5} + \frac{458013246752429958285289806551}{6130694585174677034818193668507} a^{3} + \frac{383023767409824919122278615787}{6130694585174677034818193668507} a$
Class group and class number
$C_{217593176}$, which has order $217593176$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57529828940.82975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-158}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | $26$ | $26$ | $26$ | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 79 | Data not computed | ||||||