Properties

Label 26.0.151...112.1
Degree $26$
Signature $[0, 13]$
Discriminant $-1.517\times 10^{59}$
Root discriminant \(188.88\)
Ramified primes $2,79$
Class number $217593176$ (GRH)
Class group [217593176] (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168)
 
gp: K = bnfinit(y^26 + 158*y^24 + 10112*y^22 + 341912*y^20 + 6687824*y^18 + 78249184*y^16 + 550482112*y^14 + 2272338304*y^12 + 5158171648*y^10 + 5745112576*y^8 + 2970420224*y^6 + 635357184*y^4 + 43360256*y^2 + 647168, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168)
 

\( x^{26} + 158 x^{24} + 10112 x^{22} + 341912 x^{20} + 6687824 x^{18} + 78249184 x^{16} + 550482112 x^{14} + \cdots + 647168 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-151651640667491538463656289407733022385317053604971635802112\) \(\medspace = -\,2^{39}\cdot 79^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(188.88\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}79^{25/26}\approx 188.88019717124266$
Ramified primes:   \(2\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-158}) \)
$\card{ \Gal(K/\Q) }$:  $26$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(632=2^{3}\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{632}(1,·)$, $\chi_{632}(97,·)$, $\chi_{632}(453,·)$, $\chi_{632}(65,·)$, $\chi_{632}(457,·)$, $\chi_{632}(333,·)$, $\chi_{632}(417,·)$, $\chi_{632}(337,·)$, $\chi_{632}(89,·)$, $\chi_{632}(157,·)$, $\chi_{632}(69,·)$, $\chi_{632}(289,·)$, $\chi_{632}(229,·)$, $\chi_{632}(373,·)$, $\chi_{632}(357,·)$, $\chi_{632}(561,·)$, $\chi_{632}(617,·)$, $\chi_{632}(225,·)$, $\chi_{632}(173,·)$, $\chi_{632}(93,·)$, $\chi_{632}(433,·)$, $\chi_{632}(565,·)$, $\chi_{632}(349,·)$, $\chi_{632}(441,·)$, $\chi_{632}(61,·)$, $\chi_{632}(501,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{4096}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{4}a^{5}$, $\frac{1}{8}a^{6}$, $\frac{1}{8}a^{7}$, $\frac{1}{16}a^{8}$, $\frac{1}{16}a^{9}$, $\frac{1}{32}a^{10}$, $\frac{1}{32}a^{11}$, $\frac{1}{64}a^{12}$, $\frac{1}{64}a^{13}$, $\frac{1}{128}a^{14}$, $\frac{1}{128}a^{15}$, $\frac{1}{256}a^{16}$, $\frac{1}{256}a^{17}$, $\frac{1}{11776}a^{18}-\frac{1}{1472}a^{16}-\frac{9}{2944}a^{14}-\frac{1}{736}a^{12}+\frac{3}{736}a^{10}-\frac{1}{46}a^{8}+\frac{3}{184}a^{6}+\frac{1}{23}a^{4}+\frac{1}{46}a^{2}+\frac{11}{23}$, $\frac{1}{11776}a^{19}-\frac{1}{1472}a^{17}-\frac{9}{2944}a^{15}-\frac{1}{736}a^{13}+\frac{3}{736}a^{11}-\frac{1}{46}a^{9}+\frac{3}{184}a^{7}+\frac{1}{23}a^{5}+\frac{1}{46}a^{3}+\frac{11}{23}a$, $\frac{1}{23552}a^{20}-\frac{1}{2944}a^{16}+\frac{1}{368}a^{14}-\frac{5}{1472}a^{12}+\frac{1}{184}a^{10}-\frac{3}{184}a^{8}-\frac{7}{184}a^{6}-\frac{3}{46}a^{4}-\frac{4}{23}a^{2}-\frac{2}{23}$, $\frac{1}{23552}a^{21}-\frac{1}{2944}a^{17}+\frac{1}{368}a^{15}-\frac{5}{1472}a^{13}+\frac{1}{184}a^{11}-\frac{3}{184}a^{9}-\frac{7}{184}a^{7}-\frac{3}{46}a^{5}-\frac{4}{23}a^{3}-\frac{2}{23}a$, $\frac{1}{4851712}a^{22}+\frac{9}{606464}a^{20}-\frac{15}{1212928}a^{18}-\frac{29}{303232}a^{16}-\frac{1003}{303232}a^{14}+\frac{43}{37904}a^{12}+\frac{153}{37904}a^{10}+\frac{1077}{37904}a^{8}-\frac{321}{9476}a^{6}-\frac{9}{412}a^{4}-\frac{579}{4738}a^{2}-\frac{376}{2369}$, $\frac{1}{4851712}a^{23}+\frac{9}{606464}a^{21}-\frac{15}{1212928}a^{19}-\frac{29}{303232}a^{17}-\frac{1003}{303232}a^{15}+\frac{43}{37904}a^{13}+\frac{153}{37904}a^{11}+\frac{1077}{37904}a^{9}-\frac{321}{9476}a^{7}-\frac{9}{412}a^{5}-\frac{579}{4738}a^{3}-\frac{376}{2369}a$, $\frac{1}{25\!\cdots\!72}a^{24}-\frac{48\!\cdots\!69}{62\!\cdots\!68}a^{22}-\frac{43\!\cdots\!61}{31\!\cdots\!84}a^{20}-\frac{20\!\cdots\!51}{39\!\cdots\!48}a^{18}-\frac{25\!\cdots\!87}{39\!\cdots\!48}a^{16}+\frac{68\!\cdots\!49}{24\!\cdots\!28}a^{14}+\frac{95\!\cdots\!07}{19\!\cdots\!24}a^{12}-\frac{35\!\cdots\!13}{19\!\cdots\!24}a^{10}-\frac{10\!\cdots\!01}{49\!\cdots\!56}a^{8}-\frac{26\!\cdots\!61}{49\!\cdots\!56}a^{6}+\frac{10\!\cdots\!95}{12\!\cdots\!14}a^{4}+\frac{45\!\cdots\!51}{61\!\cdots\!07}a^{2}+\frac{38\!\cdots\!87}{61\!\cdots\!07}$, $\frac{1}{25\!\cdots\!72}a^{25}-\frac{48\!\cdots\!69}{62\!\cdots\!68}a^{23}-\frac{43\!\cdots\!61}{31\!\cdots\!84}a^{21}-\frac{20\!\cdots\!51}{39\!\cdots\!48}a^{19}-\frac{25\!\cdots\!87}{39\!\cdots\!48}a^{17}+\frac{68\!\cdots\!49}{24\!\cdots\!28}a^{15}+\frac{95\!\cdots\!07}{19\!\cdots\!24}a^{13}-\frac{35\!\cdots\!13}{19\!\cdots\!24}a^{11}-\frac{10\!\cdots\!01}{49\!\cdots\!56}a^{9}-\frac{26\!\cdots\!61}{49\!\cdots\!56}a^{7}+\frac{10\!\cdots\!95}{12\!\cdots\!14}a^{5}+\frac{45\!\cdots\!51}{61\!\cdots\!07}a^{3}+\frac{38\!\cdots\!87}{61\!\cdots\!07}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $23$

Class group and class number

$C_{217593176}$, which has order $217593176$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{26\!\cdots\!31}{62\!\cdots\!68}a^{24}+\frac{82\!\cdots\!51}{12\!\cdots\!36}a^{22}+\frac{26\!\cdots\!03}{62\!\cdots\!68}a^{20}+\frac{44\!\cdots\!33}{31\!\cdots\!84}a^{18}+\frac{10\!\cdots\!03}{39\!\cdots\!48}a^{16}+\frac{63\!\cdots\!01}{19\!\cdots\!24}a^{14}+\frac{11\!\cdots\!97}{49\!\cdots\!56}a^{12}+\frac{17\!\cdots\!19}{19\!\cdots\!24}a^{10}+\frac{10\!\cdots\!21}{49\!\cdots\!56}a^{8}+\frac{26\!\cdots\!77}{12\!\cdots\!14}a^{6}+\frac{25\!\cdots\!81}{24\!\cdots\!28}a^{4}+\frac{22\!\cdots\!19}{12\!\cdots\!14}a^{2}+\frac{53\!\cdots\!12}{61\!\cdots\!07}$, $\frac{18\!\cdots\!95}{25\!\cdots\!72}a^{24}+\frac{14\!\cdots\!63}{12\!\cdots\!36}a^{22}+\frac{47\!\cdots\!37}{62\!\cdots\!68}a^{20}+\frac{40\!\cdots\!21}{15\!\cdots\!92}a^{18}+\frac{78\!\cdots\!13}{15\!\cdots\!92}a^{16}+\frac{14\!\cdots\!63}{24\!\cdots\!28}a^{14}+\frac{16\!\cdots\!97}{39\!\cdots\!48}a^{12}+\frac{33\!\cdots\!97}{19\!\cdots\!24}a^{10}+\frac{18\!\cdots\!59}{49\!\cdots\!56}a^{8}+\frac{26\!\cdots\!20}{61\!\cdots\!07}a^{6}+\frac{26\!\cdots\!99}{12\!\cdots\!14}a^{4}+\frac{24\!\cdots\!34}{61\!\cdots\!07}a^{2}+\frac{96\!\cdots\!83}{61\!\cdots\!07}$, $\frac{62\!\cdots\!17}{25\!\cdots\!72}a^{24}+\frac{12\!\cdots\!35}{31\!\cdots\!84}a^{22}+\frac{19\!\cdots\!91}{78\!\cdots\!96}a^{20}+\frac{65\!\cdots\!71}{78\!\cdots\!96}a^{18}+\frac{12\!\cdots\!89}{78\!\cdots\!96}a^{16}+\frac{71\!\cdots\!15}{39\!\cdots\!48}a^{14}+\frac{47\!\cdots\!73}{39\!\cdots\!48}a^{12}+\frac{45\!\cdots\!31}{98\!\cdots\!12}a^{10}+\frac{42\!\cdots\!33}{49\!\cdots\!56}a^{8}+\frac{27\!\cdots\!97}{49\!\cdots\!56}a^{6}-\frac{85\!\cdots\!75}{12\!\cdots\!14}a^{4}-\frac{95\!\cdots\!10}{61\!\cdots\!07}a^{2}-\frac{18\!\cdots\!49}{61\!\cdots\!07}$, $\frac{16\!\cdots\!85}{25\!\cdots\!72}a^{24}+\frac{65\!\cdots\!97}{62\!\cdots\!68}a^{22}+\frac{20\!\cdots\!29}{31\!\cdots\!84}a^{20}+\frac{17\!\cdots\!45}{78\!\cdots\!96}a^{18}+\frac{34\!\cdots\!77}{78\!\cdots\!96}a^{16}+\frac{20\!\cdots\!29}{39\!\cdots\!48}a^{14}+\frac{14\!\cdots\!69}{39\!\cdots\!48}a^{12}+\frac{29\!\cdots\!07}{19\!\cdots\!24}a^{10}+\frac{20\!\cdots\!70}{61\!\cdots\!07}a^{8}+\frac{18\!\cdots\!35}{49\!\cdots\!56}a^{6}+\frac{12\!\cdots\!59}{61\!\cdots\!07}a^{4}+\frac{25\!\cdots\!42}{61\!\cdots\!07}a^{2}+\frac{16\!\cdots\!06}{61\!\cdots\!07}$, $\frac{33\!\cdots\!81}{12\!\cdots\!36}a^{24}+\frac{52\!\cdots\!49}{12\!\cdots\!36}a^{22}+\frac{83\!\cdots\!69}{31\!\cdots\!84}a^{20}+\frac{69\!\cdots\!23}{78\!\cdots\!96}a^{18}+\frac{13\!\cdots\!91}{78\!\cdots\!96}a^{16}+\frac{38\!\cdots\!77}{19\!\cdots\!24}a^{14}+\frac{12\!\cdots\!21}{98\!\cdots\!12}a^{12}+\frac{48\!\cdots\!05}{98\!\cdots\!12}a^{10}+\frac{91\!\cdots\!63}{98\!\cdots\!12}a^{8}+\frac{28\!\cdots\!87}{49\!\cdots\!56}a^{6}-\frac{41\!\cdots\!23}{24\!\cdots\!28}a^{4}-\frac{24\!\cdots\!35}{12\!\cdots\!14}a^{2}-\frac{91\!\cdots\!76}{61\!\cdots\!07}$, $\frac{97\!\cdots\!31}{62\!\cdots\!68}a^{24}+\frac{15\!\cdots\!31}{62\!\cdots\!68}a^{22}+\frac{49\!\cdots\!51}{31\!\cdots\!84}a^{20}+\frac{10\!\cdots\!79}{19\!\cdots\!24}a^{18}+\frac{16\!\cdots\!61}{15\!\cdots\!92}a^{16}+\frac{24\!\cdots\!83}{19\!\cdots\!24}a^{14}+\frac{85\!\cdots\!89}{98\!\cdots\!12}a^{12}+\frac{17\!\cdots\!71}{49\!\cdots\!56}a^{10}+\frac{50\!\cdots\!15}{61\!\cdots\!07}a^{8}+\frac{22\!\cdots\!37}{24\!\cdots\!28}a^{6}+\frac{54\!\cdots\!21}{12\!\cdots\!14}a^{4}+\frac{44\!\cdots\!75}{61\!\cdots\!07}a^{2}+\frac{38\!\cdots\!26}{61\!\cdots\!07}$, $\frac{16\!\cdots\!51}{24\!\cdots\!24}a^{24}+\frac{65\!\cdots\!23}{62\!\cdots\!68}a^{22}+\frac{42\!\cdots\!09}{62\!\cdots\!68}a^{20}+\frac{35\!\cdots\!37}{15\!\cdots\!92}a^{18}+\frac{87\!\cdots\!45}{19\!\cdots\!24}a^{16}+\frac{40\!\cdots\!53}{78\!\cdots\!96}a^{14}+\frac{17\!\cdots\!63}{49\!\cdots\!56}a^{12}+\frac{29\!\cdots\!93}{19\!\cdots\!24}a^{10}+\frac{32\!\cdots\!19}{98\!\cdots\!12}a^{8}+\frac{44\!\cdots\!01}{12\!\cdots\!14}a^{6}+\frac{11\!\cdots\!38}{61\!\cdots\!07}a^{4}+\frac{42\!\cdots\!89}{12\!\cdots\!14}a^{2}+\frac{10\!\cdots\!88}{61\!\cdots\!07}$, $\frac{41\!\cdots\!21}{25\!\cdots\!72}a^{24}+\frac{16\!\cdots\!65}{62\!\cdots\!68}a^{22}+\frac{10\!\cdots\!09}{62\!\cdots\!68}a^{20}+\frac{87\!\cdots\!95}{15\!\cdots\!92}a^{18}+\frac{17\!\cdots\!15}{15\!\cdots\!92}a^{16}+\frac{99\!\cdots\!19}{78\!\cdots\!96}a^{14}+\frac{34\!\cdots\!35}{39\!\cdots\!48}a^{12}+\frac{70\!\cdots\!63}{19\!\cdots\!24}a^{10}+\frac{78\!\cdots\!97}{98\!\cdots\!12}a^{8}+\frac{51\!\cdots\!77}{61\!\cdots\!07}a^{6}+\frac{23\!\cdots\!94}{61\!\cdots\!07}a^{4}+\frac{79\!\cdots\!41}{12\!\cdots\!14}a^{2}+\frac{68\!\cdots\!43}{61\!\cdots\!07}$, $\frac{76\!\cdots\!17}{12\!\cdots\!36}a^{24}+\frac{29\!\cdots\!95}{31\!\cdots\!84}a^{22}+\frac{47\!\cdots\!13}{78\!\cdots\!96}a^{20}+\frac{80\!\cdots\!03}{39\!\cdots\!48}a^{18}+\frac{97\!\cdots\!47}{24\!\cdots\!28}a^{16}+\frac{36\!\cdots\!71}{78\!\cdots\!96}a^{14}+\frac{62\!\cdots\!25}{19\!\cdots\!24}a^{12}+\frac{12\!\cdots\!91}{98\!\cdots\!12}a^{10}+\frac{66\!\cdots\!67}{24\!\cdots\!28}a^{8}+\frac{32\!\cdots\!89}{12\!\cdots\!14}a^{6}+\frac{64\!\cdots\!08}{61\!\cdots\!07}a^{4}+\frac{91\!\cdots\!23}{61\!\cdots\!07}a^{2}+\frac{21\!\cdots\!28}{61\!\cdots\!07}$, $\frac{20\!\cdots\!79}{25\!\cdots\!72}a^{24}+\frac{16\!\cdots\!29}{12\!\cdots\!36}a^{22}+\frac{65\!\cdots\!71}{78\!\cdots\!96}a^{20}+\frac{22\!\cdots\!63}{78\!\cdots\!96}a^{18}+\frac{43\!\cdots\!51}{78\!\cdots\!96}a^{16}+\frac{25\!\cdots\!27}{39\!\cdots\!48}a^{14}+\frac{17\!\cdots\!21}{39\!\cdots\!48}a^{12}+\frac{37\!\cdots\!87}{19\!\cdots\!24}a^{10}+\frac{20\!\cdots\!97}{49\!\cdots\!56}a^{8}+\frac{57\!\cdots\!37}{12\!\cdots\!14}a^{6}+\frac{56\!\cdots\!71}{24\!\cdots\!28}a^{4}+\frac{49\!\cdots\!39}{12\!\cdots\!14}a^{2}+\frac{45\!\cdots\!31}{61\!\cdots\!07}$, $\frac{37\!\cdots\!27}{25\!\cdots\!72}a^{24}+\frac{29\!\cdots\!67}{12\!\cdots\!36}a^{22}+\frac{47\!\cdots\!67}{31\!\cdots\!84}a^{20}+\frac{79\!\cdots\!51}{15\!\cdots\!92}a^{18}+\frac{77\!\cdots\!71}{78\!\cdots\!96}a^{16}+\frac{70\!\cdots\!71}{61\!\cdots\!07}a^{14}+\frac{31\!\cdots\!19}{39\!\cdots\!48}a^{12}+\frac{63\!\cdots\!29}{19\!\cdots\!24}a^{10}+\frac{69\!\cdots\!03}{98\!\cdots\!12}a^{8}+\frac{35\!\cdots\!31}{49\!\cdots\!56}a^{6}+\frac{81\!\cdots\!05}{24\!\cdots\!28}a^{4}+\frac{68\!\cdots\!99}{12\!\cdots\!14}a^{2}+\frac{38\!\cdots\!98}{61\!\cdots\!07}$, $\frac{40\!\cdots\!13}{25\!\cdots\!72}a^{24}+\frac{32\!\cdots\!91}{12\!\cdots\!36}a^{22}+\frac{10\!\cdots\!21}{62\!\cdots\!68}a^{20}+\frac{46\!\cdots\!69}{78\!\cdots\!96}a^{18}+\frac{18\!\cdots\!81}{15\!\cdots\!92}a^{16}+\frac{11\!\cdots\!19}{78\!\cdots\!96}a^{14}+\frac{10\!\cdots\!87}{98\!\cdots\!12}a^{12}+\frac{98\!\cdots\!55}{19\!\cdots\!24}a^{10}+\frac{66\!\cdots\!87}{49\!\cdots\!56}a^{8}+\frac{11\!\cdots\!37}{49\!\cdots\!56}a^{6}+\frac{73\!\cdots\!73}{24\!\cdots\!28}a^{4}+\frac{10\!\cdots\!00}{61\!\cdots\!07}a^{2}+\frac{65\!\cdots\!91}{61\!\cdots\!07}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 57529828940.82975 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 57529828940.82975 \cdot 217593176}{2\cdot\sqrt{151651640667491538463656289407733022385317053604971635802112}}\cr\approx \mathstrut & 0.382316542811987 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 + 158*x^24 + 10112*x^22 + 341912*x^20 + 6687824*x^18 + 78249184*x^16 + 550482112*x^14 + 2272338304*x^12 + 5158171648*x^10 + 5745112576*x^8 + 2970420224*x^6 + 635357184*x^4 + 43360256*x^2 + 647168);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{26}$ (as 26T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$

Intermediate fields

\(\Q(\sqrt{-158}) \), 13.13.59091511031674153381441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.13.0.1}{13} }^{2}$ $26$ $26$ $26$ $26$ $26$ $26$ ${\href{/padicField/23.1.0.1}{1} }^{26}$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ ${\href{/padicField/31.13.0.1}{13} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/43.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/53.13.0.1}{13} }^{2}$ ${\href{/padicField/59.13.0.1}{13} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $26$$2$$13$$39$
\(79\) Copy content Toggle raw display Deg $26$$26$$1$$25$