Properties

Label 26.0.12392851913...2051.1
Degree $26$
Signature $[0, 13]$
Discriminant $-\,7^{13}\cdot 53^{25}$
Root discriminant $120.37$
Ramified primes $7, 53$
Class number $3528104$ (GRH)
Class group $[53, 66568]$ (GRH)
Galois group $C_{26}$ (as 26T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1042183837, 2407138829, 1674849805, -2138650018, 1289208265, -42007517, 208213844, -30122664, 249867510, -137420874, 48560594, -40536072, 820084, -8194220, 3181448, -2126862, 1758861, -420657, 381495, -45630, 42855, -2691, 2608, -82, 81, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^26 - x^25 + 81*x^24 - 82*x^23 + 2608*x^22 - 2691*x^21 + 42855*x^20 - 45630*x^19 + 381495*x^18 - 420657*x^17 + 1758861*x^16 - 2126862*x^15 + 3181448*x^14 - 8194220*x^13 + 820084*x^12 - 40536072*x^11 + 48560594*x^10 - 137420874*x^9 + 249867510*x^8 - 30122664*x^7 + 208213844*x^6 - 42007517*x^5 + 1289208265*x^4 - 2138650018*x^3 + 1674849805*x^2 + 2407138829*x + 1042183837)
 
gp: K = bnfinit(x^26 - x^25 + 81*x^24 - 82*x^23 + 2608*x^22 - 2691*x^21 + 42855*x^20 - 45630*x^19 + 381495*x^18 - 420657*x^17 + 1758861*x^16 - 2126862*x^15 + 3181448*x^14 - 8194220*x^13 + 820084*x^12 - 40536072*x^11 + 48560594*x^10 - 137420874*x^9 + 249867510*x^8 - 30122664*x^7 + 208213844*x^6 - 42007517*x^5 + 1289208265*x^4 - 2138650018*x^3 + 1674849805*x^2 + 2407138829*x + 1042183837, 1)
 

Normalized defining polynomial

\( x^{26} - x^{25} + 81 x^{24} - 82 x^{23} + 2608 x^{22} - 2691 x^{21} + 42855 x^{20} - 45630 x^{19} + 381495 x^{18} - 420657 x^{17} + 1758861 x^{16} - 2126862 x^{15} + 3181448 x^{14} - 8194220 x^{13} + 820084 x^{12} - 40536072 x^{11} + 48560594 x^{10} - 137420874 x^{9} + 249867510 x^{8} - 30122664 x^{7} + 208213844 x^{6} - 42007517 x^{5} + 1289208265 x^{4} - 2138650018 x^{3} + 1674849805 x^{2} + 2407138829 x + 1042183837 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $26$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 13]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1239285191389098448280715549883696172642141844074432051=-\,7^{13}\cdot 53^{25}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $120.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(371=7\cdot 53\)
Dirichlet character group:    $\lbrace$$\chi_{371}(1,·)$, $\chi_{371}(6,·)$, $\chi_{371}(335,·)$, $\chi_{371}(356,·)$, $\chi_{371}(202,·)$, $\chi_{371}(15,·)$, $\chi_{371}(272,·)$, $\chi_{371}(146,·)$, $\chi_{371}(237,·)$, $\chi_{371}(148,·)$, $\chi_{371}(216,·)$, $\chi_{371}(281,·)$, $\chi_{371}(90,·)$, $\chi_{371}(155,·)$, $\chi_{371}(223,·)$, $\chi_{371}(225,·)$, $\chi_{371}(99,·)$, $\chi_{371}(36,·)$, $\chi_{371}(134,·)$, $\chi_{371}(169,·)$, $\chi_{371}(365,·)$, $\chi_{371}(370,·)$, $\chi_{371}(309,·)$, $\chi_{371}(183,·)$, $\chi_{371}(188,·)$, $\chi_{371}(62,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{8881} a^{23} - \frac{1188}{8881} a^{22} + \frac{84}{8881} a^{21} + \frac{1127}{8881} a^{20} - \frac{2311}{8881} a^{19} + \frac{1219}{8881} a^{18} - \frac{2235}{8881} a^{17} - \frac{1941}{8881} a^{16} - \frac{1064}{8881} a^{15} - \frac{1085}{8881} a^{14} - \frac{1593}{8881} a^{13} + \frac{1879}{8881} a^{12} - \frac{2963}{8881} a^{11} - \frac{191}{8881} a^{10} - \frac{2872}{8881} a^{9} - \frac{2295}{8881} a^{8} + \frac{4200}{8881} a^{7} + \frac{1582}{8881} a^{6} + \frac{2926}{8881} a^{5} - \frac{2102}{8881} a^{4} + \frac{1903}{8881} a^{3} + \frac{221}{8881} a^{2} + \frac{1220}{8881} a + \frac{3980}{8881}$, $\frac{1}{8881} a^{24} + \frac{819}{8881} a^{22} + \frac{3228}{8881} a^{21} + \frac{4415}{8881} a^{20} - \frac{20}{8881} a^{19} - \frac{1666}{8881} a^{18} - \frac{1702}{8881} a^{17} + \frac{2088}{8881} a^{16} - \frac{4015}{8881} a^{15} - \frac{2828}{8881} a^{14} + \frac{1048}{8881} a^{13} + \frac{158}{8881} a^{12} - \frac{3359}{8881} a^{11} + \frac{1126}{8881} a^{10} - \frac{3927}{8881} a^{9} + \frac{4207}{8881} a^{8} + \frac{60}{8881} a^{7} - \frac{430}{8881} a^{6} + \frac{1515}{8881} a^{5} + \frac{288}{8881} a^{4} - \frac{3670}{8881} a^{3} - \frac{2662}{8881} a^{2} - \frac{3144}{8881} a + \frac{3548}{8881}$, $\frac{1}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{25} - \frac{1036313208294455188951908582793312763538400887290821468673339095345016536413511956670857289331833911714127134084063255}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{24} - \frac{410010259837394855651072321030452970125876668115674011197659919872335757280343754386670115936111103940016917786676051}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{23} - \frac{1796514873580983931339440867282406224259696657660474100423975519460007267959045873770564902157315330947793191029822775307}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{22} + \frac{9555322140109051645279430209448244859605746943257782871113089062528794956079569018131627280248926554958808114917650838787}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{21} + \frac{18930070110098413867201592990030079890832609007417334169660347689175717485331813519027141733573299042349442727094795547542}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{20} + \frac{3061455225311947289274742995019476553049490894104835044803032913372510227138081782532637406768668761779592519696610270048}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{19} + \frac{44892699682557720898677185917113466049886985877808701599841360286695656248189663371857991642565129905661042733641585251}{360200000382390777198547781733186592200256517358294030248122790477558161974183640580795258648990584498492155892804124317} a^{18} - \frac{1864887092306774295233342376551865984605532805175968215973806642045807948852231809883650942305129295339782779966751899264}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{17} + \frac{15898340015974975741188156701493434834980317064221546816431112691294175424820791471413402748596243807396940623671456167643}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{16} - \frac{16211556329687648850727650602093110402798060732278663981728895006927228805550019272652030311502493809301610411343812972103}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{15} - \frac{11327242022555748415934680760196546442615380477759591107385739079334360736788563672165128362576045709476932719250306960930}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{14} - \frac{12228153669759992251248364019642829356881990712637138240571008852421783390024449457152219922724721752560198061848092676759}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{13} - \frac{3134055621446034701121122339571218161989311314613782061042135843666630167243061048357495211405660152393401119981361657377}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{12} - \frac{12112467680418117076946195364893855750262705617982071564988597110272002797287045286738852964854363364868049823163900270544}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{11} + \frac{18121213630219698285722282488854238257292110151316509247254886595338988967441831638686409538230795527877067433731864646252}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{10} - \frac{18541504946198960354008223783995045990742445068752525483652027965008000928574222927338383635189185693999452779485893626308}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{9} - \frac{362156160705730492069143703700661285415293810808177000429558763316918961494370908657215260059200013423958312169774992153}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{8} - \frac{587656196225022308831413497007428361619834760520658754812844483575544429032251834157016912470361041779989896221535350901}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{7} + \frac{1044771855892972385557629458156789076229129802968439124304980308011579819949107315527156783567854193682139384914701492700}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{6} - \frac{17855232584241185180913602745005722887825165664604255076221648940411192543800042825938601417495945688920847192242802285571}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{5} + \frac{2495163929619470377379653382605034304393745184315644782445053831366607799524646375380903929129958776189195956376902416581}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{4} - \frac{18536629447368735468778088378906118196211652418565249534591712984476272272165658451775576078438711754685971697736902292251}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{3} - \frac{2822100663115909760296486276607676770177948092447137753332208552728794365350805049480351283864564789956561989230911853898}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a^{2} + \frac{6696661027195543703069573151528261058623267077093188026303334169197237940860609678174831969117338190874425084591617203459}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919} a - \frac{17041802081842532569845553396378924960038488134176662541455123138262647558254773353606030513737956543066294860598543556675}{38541400040915813160244612645450965365427447357337461236549138581098723331237649542145092675441992541338660680530041301919}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{53}\times C_{66568}$, which has order $3528104$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $12$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5382739421.971964 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{26}$ (as 26T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 26
The 26 conjugacy class representatives for $C_{26}$
Character table for $C_{26}$ is not computed

Intermediate fields

\(\Q(\sqrt{-371}) \), 13.13.491258904256726154641.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $26$ ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ R ${\href{/LocalNumberField/11.13.0.1}{13} }^{2}$ $26$ $26$ ${\href{/LocalNumberField/19.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{13}$ ${\href{/LocalNumberField/29.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ ${\href{/LocalNumberField/43.13.0.1}{13} }^{2}$ $26$ R $26$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
53Data not computed