Normalized defining polynomial
\( x^{26} - 11 x^{25} + 21 x^{24} + 88 x^{23} + 282 x^{22} - 2824 x^{21} - 690 x^{20} + 8273 x^{19} + 77627 x^{18} - 78793 x^{17} - 90833 x^{16} - 678796 x^{15} + 2458481 x^{14} + 494653 x^{13} + 16867730 x^{12} + 26865868 x^{11} + 209322522 x^{10} + 425393325 x^{9} + 1365115456 x^{8} + 2360295077 x^{7} + 6020127942 x^{6} + 9320051345 x^{5} + 18829589581 x^{4} + 23592642699 x^{3} + 36604214346 x^{2} + 29028971434 x + 25840556879 \)
Invariants
| Degree: | $26$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 13]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120546636738027837347808557425307577626634601068205941946811=-\,11^{13}\cdot 79^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $187.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(869=11\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{869}(1,·)$, $\chi_{869}(131,·)$, $\chi_{869}(65,·)$, $\chi_{869}(10,·)$, $\chi_{869}(87,·)$, $\chi_{869}(89,·)$, $\chi_{869}(144,·)$, $\chi_{869}(210,·)$, $\chi_{869}(67,·)$, $\chi_{869}(21,·)$, $\chi_{869}(791,·)$, $\chi_{869}(857,·)$, $\chi_{869}(538,·)$, $\chi_{869}(670,·)$, $\chi_{869}(417,·)$, $\chi_{869}(100,·)$, $\chi_{869}(166,·)$, $\chi_{869}(615,·)$, $\chi_{869}(617,·)$, $\chi_{869}(362,·)$, $\chi_{869}(749,·)$, $\chi_{869}(496,·)$, $\chi_{869}(694,·)$, $\chi_{869}(441,·)$, $\chi_{869}(571,·)$, $\chi_{869}(650,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{5}{23} a^{15} + \frac{5}{23} a^{14} + \frac{1}{23} a^{13} + \frac{4}{23} a^{12} - \frac{3}{23} a^{11} - \frac{7}{23} a^{10} - \frac{3}{23} a^{9} - \frac{3}{23} a^{8} + \frac{7}{23} a^{7} - \frac{4}{23} a^{6} - \frac{2}{23} a^{5} + \frac{7}{23} a^{4} - \frac{8}{23} a^{3} - \frac{1}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{23} a^{17} + \frac{3}{23} a^{15} + \frac{3}{23} a^{14} + \frac{9}{23} a^{13} - \frac{6}{23} a^{12} + \frac{1}{23} a^{11} + \frac{8}{23} a^{10} + \frac{5}{23} a^{9} - \frac{8}{23} a^{8} + \frac{8}{23} a^{7} + \frac{1}{23} a^{6} - \frac{3}{23} a^{5} + \frac{4}{23} a^{4} + \frac{5}{23} a^{3} - \frac{7}{23} a^{2} - \frac{10}{23} a$, $\frac{1}{23} a^{18} - \frac{5}{23} a^{15} - \frac{6}{23} a^{14} - \frac{9}{23} a^{13} - \frac{11}{23} a^{12} - \frac{6}{23} a^{11} + \frac{3}{23} a^{10} + \frac{1}{23} a^{9} - \frac{6}{23} a^{8} + \frac{3}{23} a^{7} + \frac{9}{23} a^{6} + \frac{10}{23} a^{5} + \frac{7}{23} a^{4} - \frac{6}{23} a^{3} - \frac{7}{23} a^{2} + \frac{6}{23} a$, $\frac{1}{23} a^{19} - \frac{8}{23} a^{15} - \frac{7}{23} a^{14} - \frac{6}{23} a^{13} - \frac{9}{23} a^{12} + \frac{11}{23} a^{11} - \frac{11}{23} a^{10} + \frac{2}{23} a^{9} + \frac{11}{23} a^{8} - \frac{2}{23} a^{7} - \frac{10}{23} a^{6} - \frac{3}{23} a^{5} + \frac{6}{23} a^{4} - \frac{1}{23} a^{3} + \frac{1}{23} a^{2} - \frac{10}{23} a$, $\frac{1}{23} a^{20} - \frac{1}{23} a^{15} + \frac{11}{23} a^{14} - \frac{1}{23} a^{13} - \frac{3}{23} a^{12} + \frac{11}{23} a^{11} - \frac{8}{23} a^{10} + \frac{10}{23} a^{9} - \frac{3}{23} a^{8} + \frac{11}{23} a^{6} - \frac{10}{23} a^{5} + \frac{9}{23} a^{4} + \frac{6}{23} a^{3} + \frac{5}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{23} a^{21} + \frac{6}{23} a^{15} + \frac{4}{23} a^{14} - \frac{2}{23} a^{13} - \frac{8}{23} a^{12} - \frac{11}{23} a^{11} + \frac{3}{23} a^{10} - \frac{6}{23} a^{9} - \frac{3}{23} a^{8} - \frac{5}{23} a^{7} + \frac{9}{23} a^{6} + \frac{7}{23} a^{5} - \frac{10}{23} a^{4} - \frac{3}{23} a^{3} + \frac{6}{23} a^{2} - \frac{2}{23} a$, $\frac{1}{529} a^{22} - \frac{9}{529} a^{21} - \frac{11}{529} a^{20} - \frac{2}{529} a^{19} - \frac{5}{529} a^{18} - \frac{1}{529} a^{16} - \frac{101}{529} a^{15} - \frac{127}{529} a^{14} + \frac{117}{529} a^{13} - \frac{206}{529} a^{12} - \frac{128}{529} a^{11} + \frac{42}{529} a^{10} - \frac{162}{529} a^{9} + \frac{15}{529} a^{8} + \frac{224}{529} a^{7} + \frac{15}{529} a^{6} - \frac{62}{529} a^{5} - \frac{39}{529} a^{4} - \frac{129}{529} a^{3} + \frac{44}{529} a^{2} + \frac{175}{529} a - \frac{7}{23}$, $\frac{1}{54487} a^{23} + \frac{20}{54487} a^{22} + \frac{740}{54487} a^{21} + \frac{576}{54487} a^{20} + \frac{29}{54487} a^{19} + \frac{522}{54487} a^{18} - \frac{737}{54487} a^{17} + \frac{445}{54487} a^{16} - \frac{2803}{54487} a^{15} + \frac{20124}{54487} a^{14} - \frac{17099}{54487} a^{13} - \frac{20454}{54487} a^{12} + \frac{19238}{54487} a^{11} + \frac{25551}{54487} a^{10} - \frac{17448}{54487} a^{9} - \frac{25055}{54487} a^{8} - \frac{13407}{54487} a^{7} + \frac{24569}{54487} a^{6} - \frac{17960}{54487} a^{5} + \frac{2995}{54487} a^{4} + \frac{17486}{54487} a^{3} - \frac{11268}{54487} a^{2} + \frac{3120}{54487} a - \frac{8}{23}$, $\frac{1}{1253201} a^{24} + \frac{10}{1253201} a^{23} - \frac{181}{1253201} a^{22} + \frac{9141}{1253201} a^{21} - \frac{14383}{1253201} a^{20} + \frac{18257}{1253201} a^{19} - \frac{26042}{1253201} a^{18} - \frac{6399}{1253201} a^{17} + \frac{1055}{54487} a^{16} - \frac{343349}{1253201} a^{15} - \frac{24905}{1253201} a^{14} + \frac{407315}{1253201} a^{13} + \frac{339138}{1253201} a^{12} + \frac{129193}{1253201} a^{11} + \frac{419305}{1253201} a^{10} + \frac{270965}{1253201} a^{9} + \frac{539036}{1253201} a^{8} + \frac{165334}{1253201} a^{7} - \frac{615601}{1253201} a^{6} - \frac{9603}{1253201} a^{5} + \frac{572370}{1253201} a^{4} - \frac{194986}{1253201} a^{3} - \frac{126765}{1253201} a^{2} - \frac{157375}{1253201} a - \frac{193}{529}$, $\frac{1}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{25} + \frac{231867383479269068716528256211213792741290081788173941984924972481707727798586933778225314}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{24} + \frac{50897839966715653562748489612969856346221218988949293240972846137325381076105200578863391012}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{23} + \frac{5680835146765187684949519923548461810275257867998898401141778435838622340351157750351303872759}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{22} - \frac{3401300660013743657234208049648524639527237608658439362846404932783743067808742191461228214812}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{21} + \frac{66675784711936767694585806785236474496646949047273978313288906175087955939736185825167369343211}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{20} - \frac{88398761818921762699958496799796098380727114002458431900800398887829794500401659092807357421647}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{19} - \frac{85107981468501357368416449208733112759876023855388358704518387755447042762650582079819061954583}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{18} - \frac{3126492927662998173119158390796993537015808392014162928587390269490311042311854898020220950142}{261699772885660788216604723604910559452382308903713094190745553988178345439289117728994484311337} a^{17} - \frac{38925594975436790002675478384665022099909887276366747094317398506083394597655725304185467844736}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{16} - \frac{2258965352328110968646593706655331874642372219158519859776114895229150495380093579486137056718082}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{15} - \frac{1641131795885079793631289494795092059170231376879837132364659525234653088033246678556891185685256}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{14} - \frac{655018763501898760858475934658834268576205746020233948370831888671771250346770548273112780674327}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{13} - \frac{847530248932909243847101804998782210088944519421467224757397111217091328419991774408692459531762}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{12} + \frac{1313353173458857928806049577108154470941653769742275959264242396906262452749899574987779084431116}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{11} + \frac{162612237349351723438609546692370434024356846611551865993475344954419207569430091466617608211071}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{10} + \frac{1042332561145148490732017026946797268940644684352475515325485028051286506615389835169887875228490}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{9} + \frac{999897358339924330505898831991955349573241348561894593913840552932808000141945560150701882908474}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{8} + \frac{960073893651948591476105060958266524220131881660589707206408501113790011684168938545247164355793}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{7} - \frac{2419115108175612491117342221022929849704273409680437220517761533561085249234464326518057658081321}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{6} + \frac{121074679028883030530268542279012068110218947876972898110248685157057344511693740031184097275786}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{5} + \frac{2467251067094782443324543957215363944973198044413424062030373837603323559432334091877242821402095}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{4} + \frac{862833811184580577169254089285255812454855015237924703342223193331614406065234425464539331834497}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{3} + \frac{633725004675319370034647890304001627420428517346383099068764549726327333099630007070062848933271}{6019094776370198128981908642912942867404793104785401166387147741728101945103649707766873139160751} a^{2} - \frac{18522683521638845051272540989035900173452566303787931617871297928566536423658056850469143732955}{261699772885660788216604723604910559452382308903713094190745553988178345439289117728994484311337} a + \frac{2523171319051493620489476138673778531324835969743772410848581494894114075835869133315962319}{110468456262414853616126941158679003567911485396248667872834763186229778572937576078089693673}$
Class group and class number
$C_{298678381}$, which has order $298678381$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57529828940.82975 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 26 |
| The 26 conjugacy class representatives for $C_{26}$ |
| Character table for $C_{26}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 13.13.59091511031674153381441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $26$ | ${\href{/LocalNumberField/3.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/5.13.0.1}{13} }^{2}$ | $26$ | R | $26$ | $26$ | $26$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{26}$ | $26$ | ${\href{/LocalNumberField/31.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/37.13.0.1}{13} }^{2}$ | $26$ | $26$ | ${\href{/LocalNumberField/47.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/53.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/59.13.0.1}{13} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 79 | Data not computed | ||||||