Normalized defining polynomial
\(x^{26} - 4 x^{25} + 29 x^{24} - 114 x^{23} + 437 x^{22} - 1233 x^{21} + 3738 x^{20} - 6943 x^{19} + 17106 x^{18} - 22984 x^{17} + 59870 x^{16} - 97147 x^{15} + 263098 x^{14} - 450753 x^{13} + 813670 x^{12} - 1048444 x^{11} + 1103470 x^{10} - 985605 x^{9} + 369592 x^{8} - 235197 x^{7} - 276734 x^{6} + 186178 x^{5} - 88862 x^{4} + 240404 x^{3} + 178609 x^{2} + 96160 x + 61675\)
Invariants
Degree: | $26$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 13]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-105838418476275527898387851073846090273368671\)\(\medspace = -\,31^{13}\cdot 113^{12}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $49.35$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $31, 113$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{25} a^{19} - \frac{2}{25} a^{18} - \frac{1}{25} a^{16} - \frac{1}{25} a^{14} - \frac{6}{25} a^{12} + \frac{6}{25} a^{11} + \frac{7}{25} a^{10} - \frac{6}{25} a^{9} - \frac{12}{25} a^{8} - \frac{1}{25} a^{7} - \frac{2}{25} a^{6} + \frac{4}{25} a^{5} - \frac{12}{25} a^{4} + \frac{2}{25} a^{3} + \frac{7}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{20} + \frac{1}{25} a^{18} - \frac{1}{25} a^{17} - \frac{2}{25} a^{16} - \frac{1}{25} a^{15} - \frac{2}{25} a^{14} - \frac{1}{25} a^{13} - \frac{11}{25} a^{12} - \frac{1}{25} a^{11} + \frac{3}{25} a^{10} + \frac{1}{25} a^{9} + \frac{1}{5} a^{8} + \frac{11}{25} a^{7} + \frac{1}{5} a^{6} + \frac{6}{25} a^{5} - \frac{12}{25} a^{4} - \frac{4}{25} a^{3} - \frac{1}{25} a^{2}$, $\frac{1}{775} a^{21} - \frac{7}{775} a^{20} - \frac{4}{775} a^{19} - \frac{58}{775} a^{18} - \frac{6}{155} a^{17} + \frac{3}{775} a^{16} + \frac{38}{775} a^{14} + \frac{71}{775} a^{13} - \frac{164}{775} a^{12} - \frac{11}{155} a^{11} - \frac{57}{155} a^{10} + \frac{233}{775} a^{9} + \frac{221}{775} a^{8} + \frac{213}{775} a^{7} - \frac{144}{775} a^{6} + \frac{101}{775} a^{5} + \frac{21}{155} a^{4} + \frac{202}{775} a^{3} + \frac{282}{775} a^{2} + \frac{21}{155} a + \frac{14}{31}$, $\frac{1}{775} a^{22} + \frac{9}{775} a^{20} + \frac{7}{775} a^{19} + \frac{12}{155} a^{18} + \frac{41}{775} a^{17} - \frac{41}{775} a^{16} - \frac{24}{775} a^{15} - \frac{7}{155} a^{14} - \frac{39}{775} a^{13} - \frac{118}{775} a^{12} - \frac{174}{775} a^{11} - \frac{6}{31} a^{10} + \frac{271}{775} a^{9} + \frac{334}{775} a^{8} - \frac{234}{775} a^{7} - \frac{318}{775} a^{6} - \frac{304}{775} a^{5} + \frac{162}{775} a^{4} + \frac{239}{775} a^{3} + \frac{33}{775} a^{2} + \frac{1}{5} a + \frac{5}{31}$, $\frac{1}{275125} a^{23} - \frac{3}{8875} a^{22} + \frac{164}{275125} a^{21} - \frac{4116}{275125} a^{20} + \frac{2509}{275125} a^{19} - \frac{1269}{55025} a^{18} - \frac{5063}{275125} a^{17} - \frac{179}{275125} a^{16} + \frac{14938}{275125} a^{15} + \frac{8858}{275125} a^{14} - \frac{4159}{55025} a^{13} + \frac{13466}{275125} a^{12} + \frac{29858}{275125} a^{11} - \frac{25087}{275125} a^{10} - \frac{4112}{55025} a^{9} + \frac{65579}{275125} a^{8} - \frac{44462}{275125} a^{7} - \frac{9708}{55025} a^{6} + \frac{120473}{275125} a^{5} + \frac{642}{2201} a^{4} + \frac{14496}{55025} a^{3} - \frac{1503}{8875} a^{2} + \frac{23926}{55025} a - \frac{154}{355}$, $\frac{1}{89415625} a^{24} + \frac{3}{17883125} a^{23} - \frac{6449}{17883125} a^{22} + \frac{13596}{89415625} a^{21} - \frac{1699784}{89415625} a^{20} - \frac{1520668}{89415625} a^{19} - \frac{3627948}{89415625} a^{18} - \frac{3323793}{89415625} a^{17} + \frac{53267}{6878125} a^{16} + \frac{1234502}{89415625} a^{15} - \frac{4389131}{89415625} a^{14} + \frac{2832746}{89415625} a^{13} - \frac{30003249}{89415625} a^{12} - \frac{3550748}{89415625} a^{11} + \frac{22590774}{89415625} a^{10} - \frac{36366606}{89415625} a^{9} - \frac{273134}{1375625} a^{8} + \frac{2359}{40625} a^{7} - \frac{11699997}{89415625} a^{6} + \frac{42857729}{89415625} a^{5} - \frac{8071262}{17883125} a^{4} + \frac{25304402}{89415625} a^{3} + \frac{2045707}{6878125} a^{2} + \frac{2670188}{17883125} a - \frac{946562}{3576625}$, $\frac{1}{784803989526277132786021644580620722639830203197216328125} a^{25} - \frac{1911911312047144992295631852576040423383802275882}{784803989526277132786021644580620722639830203197216328125} a^{24} + \frac{1929019010572000732413235578865627817065408621927}{31392159581051085311440865783224828905593208127888653125} a^{23} + \frac{13207212660022549983008151462516478175435236024305601}{71345817229661557526001967689147338421802745745201484375} a^{22} + \frac{409600020839943461908499992025992783225049167746062229}{784803989526277132786021644580620722639830203197216328125} a^{21} + \frac{537998017938366206814935128476675633405607435163700216}{156960797905255426557204328916124144527966040639443265625} a^{20} - \frac{5508541992230012527326221822343359664904213935282858252}{784803989526277132786021644580620722639830203197216328125} a^{19} + \frac{47464683718048354185407806626218488539520945045238320188}{784803989526277132786021644580620722639830203197216328125} a^{18} + \frac{11629471588819314147221701428272628271801730408222367667}{784803989526277132786021644580620722639830203197216328125} a^{17} + \frac{14700821535716782153600492734720277559568431231924101953}{156960797905255426557204328916124144527966040639443265625} a^{16} + \frac{268425601927097551721194040979962996209836280194803}{12602231867142145849635032430038068609230513098309375} a^{15} + \frac{4069326205596102970421309979845004944331122744312357106}{60369537655867471752770895736970824818448477169016640625} a^{14} - \frac{65353893339408606893419174849902199049378779653047409161}{784803989526277132786021644580620722639830203197216328125} a^{13} - \frac{28304737764432365219540515200030681633826084552891487979}{156960797905255426557204328916124144527966040639443265625} a^{12} - \frac{35553757831050772194767060401241444056373470265326178829}{156960797905255426557204328916124144527966040639443265625} a^{11} - \frac{52696841442702763943069985113940380878982569493991704134}{784803989526277132786021644580620722639830203197216328125} a^{10} - \frac{331838192680291201375569140586598254507167098869904784378}{784803989526277132786021644580620722639830203197216328125} a^{9} + \frac{211733458476571929778996661366737543355306310432483818279}{784803989526277132786021644580620722639830203197216328125} a^{8} - \frac{1186144081297168640994429679467757530621440528508683742}{3339591444792668650153283593960088181446085971051984375} a^{7} - \frac{177526463346251054096029912069689836238519896409940937712}{784803989526277132786021644580620722639830203197216328125} a^{6} + \frac{18895037870411059097110472139404923648727560830308608777}{784803989526277132786021644580620722639830203197216328125} a^{5} + \frac{2052129287367135637235133347418720219476917403873336429}{5488139786897042886615535976088256801677134288092421875} a^{4} + \frac{168034406916441353007903694997153811211365207350403088847}{784803989526277132786021644580620722639830203197216328125} a^{3} - \frac{22467195984712454168751648014369880751620356188411921967}{71345817229661557526001967689147338421802745745201484375} a^{2} - \frac{50208697795280718145822003294281017408146219635552556196}{156960797905255426557204328916124144527966040639443265625} a + \frac{14925255832939004311646284809493023243617975482303495489}{31392159581051085311440865783224828905593208127888653125}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 195886918009.72314 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 52 |
The 16 conjugacy class representatives for $D_{26}$ |
Character table for $D_{26}$ |
Intermediate fields
\(\Q(\sqrt{-31}) \), 13.1.1847739844104888853729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{13}$ | $26$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $26$ | $26$ | R | $26$ | ${\href{/LocalNumberField/41.13.0.1}{13} }^{2}$ | $26$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{13}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$113$ | $\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{113}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
113.2.1.1 | $x^{2} - 113$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |