Properties

Label 26.0.105...671.1
Degree $26$
Signature $[0, 13]$
Discriminant $-1.058\times 10^{44}$
Root discriminant \(49.35\)
Ramified primes $31,113$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $D_{26}$ (as 26T3)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675)
 
gp: K = bnfinit(y^26 - 4*y^25 + 29*y^24 - 114*y^23 + 437*y^22 - 1233*y^21 + 3738*y^20 - 6943*y^19 + 17106*y^18 - 22984*y^17 + 59870*y^16 - 97147*y^15 + 263098*y^14 - 450753*y^13 + 813670*y^12 - 1048444*y^11 + 1103470*y^10 - 985605*y^9 + 369592*y^8 - 235197*y^7 - 276734*y^6 + 186178*y^5 - 88862*y^4 + 240404*y^3 + 178609*y^2 + 96160*y + 61675, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675)
 

\( x^{26} - 4 x^{25} + 29 x^{24} - 114 x^{23} + 437 x^{22} - 1233 x^{21} + 3738 x^{20} - 6943 x^{19} + \cdots + 61675 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $26$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 13]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-105838418476275527898387851073846090273368671\) \(\medspace = -\,31^{13}\cdot 113^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(49.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $31^{1/2}113^{1/2}\approx 59.18614702783076$
Ramified primes:   \(31\), \(113\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-31}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5}a^{13}+\frac{1}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}-\frac{2}{5}a^{7}+\frac{1}{5}a^{6}+\frac{2}{5}a^{5}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{1}{5}a$, $\frac{1}{5}a^{14}+\frac{1}{5}a^{12}+\frac{2}{5}a^{11}-\frac{2}{5}a^{10}-\frac{1}{5}a^{9}+\frac{2}{5}a^{8}-\frac{2}{5}a^{7}+\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{5}a^{15}+\frac{1}{5}a^{12}+\frac{1}{5}a^{11}+\frac{2}{5}a^{8}-\frac{2}{5}a^{7}+\frac{2}{5}a^{6}-\frac{1}{5}a^{5}+\frac{1}{5}a^{4}-\frac{2}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{5}a^{16}-\frac{2}{5}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{8}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{5}a^{17}-\frac{2}{5}a^{12}+\frac{1}{5}a^{11}+\frac{2}{5}a^{9}-\frac{1}{5}a^{8}-\frac{2}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a^{2}$, $\frac{1}{5}a^{18}-\frac{2}{5}a^{12}-\frac{1}{5}a^{11}-\frac{2}{5}a^{9}+\frac{2}{5}a^{4}+\frac{1}{5}a^{3}-\frac{1}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{25}a^{19}-\frac{2}{25}a^{18}-\frac{1}{25}a^{16}-\frac{1}{25}a^{14}-\frac{6}{25}a^{12}+\frac{6}{25}a^{11}+\frac{7}{25}a^{10}-\frac{6}{25}a^{9}-\frac{12}{25}a^{8}-\frac{1}{25}a^{7}-\frac{2}{25}a^{6}+\frac{4}{25}a^{5}-\frac{12}{25}a^{4}+\frac{2}{25}a^{3}+\frac{7}{25}a^{2}+\frac{1}{5}a$, $\frac{1}{25}a^{20}+\frac{1}{25}a^{18}-\frac{1}{25}a^{17}-\frac{2}{25}a^{16}-\frac{1}{25}a^{15}-\frac{2}{25}a^{14}-\frac{1}{25}a^{13}-\frac{11}{25}a^{12}-\frac{1}{25}a^{11}+\frac{3}{25}a^{10}+\frac{1}{25}a^{9}+\frac{1}{5}a^{8}+\frac{11}{25}a^{7}+\frac{1}{5}a^{6}+\frac{6}{25}a^{5}-\frac{12}{25}a^{4}-\frac{4}{25}a^{3}-\frac{1}{25}a^{2}$, $\frac{1}{775}a^{21}-\frac{7}{775}a^{20}-\frac{4}{775}a^{19}-\frac{58}{775}a^{18}-\frac{6}{155}a^{17}+\frac{3}{775}a^{16}+\frac{38}{775}a^{14}+\frac{71}{775}a^{13}-\frac{164}{775}a^{12}-\frac{11}{155}a^{11}-\frac{57}{155}a^{10}+\frac{233}{775}a^{9}+\frac{221}{775}a^{8}+\frac{213}{775}a^{7}-\frac{144}{775}a^{6}+\frac{101}{775}a^{5}+\frac{21}{155}a^{4}+\frac{202}{775}a^{3}+\frac{282}{775}a^{2}+\frac{21}{155}a+\frac{14}{31}$, $\frac{1}{775}a^{22}+\frac{9}{775}a^{20}+\frac{7}{775}a^{19}+\frac{12}{155}a^{18}+\frac{41}{775}a^{17}-\frac{41}{775}a^{16}-\frac{24}{775}a^{15}-\frac{7}{155}a^{14}-\frac{39}{775}a^{13}-\frac{118}{775}a^{12}-\frac{174}{775}a^{11}-\frac{6}{31}a^{10}+\frac{271}{775}a^{9}+\frac{334}{775}a^{8}-\frac{234}{775}a^{7}-\frac{318}{775}a^{6}-\frac{304}{775}a^{5}+\frac{162}{775}a^{4}+\frac{239}{775}a^{3}+\frac{33}{775}a^{2}+\frac{1}{5}a+\frac{5}{31}$, $\frac{1}{275125}a^{23}-\frac{3}{8875}a^{22}+\frac{164}{275125}a^{21}-\frac{4116}{275125}a^{20}+\frac{2509}{275125}a^{19}-\frac{1269}{55025}a^{18}-\frac{5063}{275125}a^{17}-\frac{179}{275125}a^{16}+\frac{14938}{275125}a^{15}+\frac{8858}{275125}a^{14}-\frac{4159}{55025}a^{13}+\frac{13466}{275125}a^{12}+\frac{29858}{275125}a^{11}-\frac{25087}{275125}a^{10}-\frac{4112}{55025}a^{9}+\frac{65579}{275125}a^{8}-\frac{44462}{275125}a^{7}-\frac{9708}{55025}a^{6}+\frac{120473}{275125}a^{5}+\frac{642}{2201}a^{4}+\frac{14496}{55025}a^{3}-\frac{1503}{8875}a^{2}+\frac{23926}{55025}a-\frac{154}{355}$, $\frac{1}{89415625}a^{24}+\frac{3}{17883125}a^{23}-\frac{6449}{17883125}a^{22}+\frac{13596}{89415625}a^{21}-\frac{1699784}{89415625}a^{20}-\frac{1520668}{89415625}a^{19}-\frac{3627948}{89415625}a^{18}-\frac{3323793}{89415625}a^{17}+\frac{53267}{6878125}a^{16}+\frac{1234502}{89415625}a^{15}-\frac{4389131}{89415625}a^{14}+\frac{2832746}{89415625}a^{13}-\frac{30003249}{89415625}a^{12}-\frac{3550748}{89415625}a^{11}+\frac{22590774}{89415625}a^{10}-\frac{36366606}{89415625}a^{9}-\frac{273134}{1375625}a^{8}+\frac{2359}{40625}a^{7}-\frac{11699997}{89415625}a^{6}+\frac{42857729}{89415625}a^{5}-\frac{8071262}{17883125}a^{4}+\frac{25304402}{89415625}a^{3}+\frac{2045707}{6878125}a^{2}+\frac{2670188}{17883125}a-\frac{946562}{3576625}$, $\frac{1}{78\!\cdots\!25}a^{25}-\frac{19\!\cdots\!82}{78\!\cdots\!25}a^{24}+\frac{19\!\cdots\!27}{31\!\cdots\!25}a^{23}+\frac{13\!\cdots\!01}{71\!\cdots\!75}a^{22}+\frac{40\!\cdots\!29}{78\!\cdots\!25}a^{21}+\frac{53\!\cdots\!16}{15\!\cdots\!25}a^{20}-\frac{55\!\cdots\!52}{78\!\cdots\!25}a^{19}+\frac{47\!\cdots\!88}{78\!\cdots\!25}a^{18}+\frac{11\!\cdots\!67}{78\!\cdots\!25}a^{17}+\frac{14\!\cdots\!53}{15\!\cdots\!25}a^{16}+\frac{26\!\cdots\!03}{12\!\cdots\!75}a^{15}+\frac{40\!\cdots\!06}{60\!\cdots\!25}a^{14}-\frac{65\!\cdots\!61}{78\!\cdots\!25}a^{13}-\frac{28\!\cdots\!79}{15\!\cdots\!25}a^{12}-\frac{35\!\cdots\!29}{15\!\cdots\!25}a^{11}-\frac{52\!\cdots\!34}{78\!\cdots\!25}a^{10}-\frac{33\!\cdots\!78}{78\!\cdots\!25}a^{9}+\frac{21\!\cdots\!79}{78\!\cdots\!25}a^{8}-\frac{11\!\cdots\!42}{33\!\cdots\!75}a^{7}-\frac{17\!\cdots\!12}{78\!\cdots\!25}a^{6}+\frac{18\!\cdots\!77}{78\!\cdots\!25}a^{5}+\frac{20\!\cdots\!29}{54\!\cdots\!75}a^{4}+\frac{16\!\cdots\!47}{78\!\cdots\!25}a^{3}-\frac{22\!\cdots\!67}{71\!\cdots\!75}a^{2}-\frac{50\!\cdots\!96}{15\!\cdots\!25}a+\frac{14\!\cdots\!89}{31\!\cdots\!25}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $12$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{25\!\cdots\!39}{78\!\cdots\!25}a^{25}-\frac{14\!\cdots\!73}{78\!\cdots\!25}a^{24}+\frac{34\!\cdots\!48}{31\!\cdots\!25}a^{23}-\frac{35\!\cdots\!11}{71\!\cdots\!75}a^{22}+\frac{14\!\cdots\!06}{78\!\cdots\!25}a^{21}-\frac{28\!\cdots\!31}{50\!\cdots\!75}a^{20}+\frac{12\!\cdots\!22}{78\!\cdots\!25}a^{19}-\frac{27\!\cdots\!93}{78\!\cdots\!25}a^{18}+\frac{52\!\cdots\!63}{78\!\cdots\!25}a^{17}-\frac{19\!\cdots\!18}{15\!\cdots\!25}a^{16}+\frac{26\!\cdots\!93}{12\!\cdots\!75}a^{15}-\frac{39\!\cdots\!83}{78\!\cdots\!25}a^{14}+\frac{63\!\cdots\!17}{60\!\cdots\!25}a^{13}-\frac{34\!\cdots\!16}{15\!\cdots\!25}a^{12}+\frac{54\!\cdots\!49}{15\!\cdots\!25}a^{11}-\frac{36\!\cdots\!76}{78\!\cdots\!25}a^{10}+\frac{36\!\cdots\!33}{78\!\cdots\!25}a^{9}-\frac{37\!\cdots\!64}{11\!\cdots\!75}a^{8}+\frac{78\!\cdots\!17}{33\!\cdots\!75}a^{7}-\frac{20\!\cdots\!68}{78\!\cdots\!25}a^{6}+\frac{32\!\cdots\!03}{78\!\cdots\!25}a^{5}+\frac{19\!\cdots\!28}{71\!\cdots\!75}a^{4}-\frac{62\!\cdots\!17}{78\!\cdots\!25}a^{3}-\frac{25\!\cdots\!13}{71\!\cdots\!75}a^{2}-\frac{55\!\cdots\!94}{15\!\cdots\!25}a-\frac{25\!\cdots\!54}{31\!\cdots\!25}$, $\frac{54\!\cdots\!96}{78\!\cdots\!25}a^{25}-\frac{15\!\cdots\!72}{78\!\cdots\!25}a^{24}+\frac{51\!\cdots\!82}{31\!\cdots\!25}a^{23}-\frac{12\!\cdots\!09}{23\!\cdots\!25}a^{22}+\frac{15\!\cdots\!84}{78\!\cdots\!25}a^{21}-\frac{67\!\cdots\!09}{15\!\cdots\!25}a^{20}+\frac{10\!\cdots\!08}{78\!\cdots\!25}a^{19}-\frac{85\!\cdots\!02}{78\!\cdots\!25}a^{18}+\frac{33\!\cdots\!57}{78\!\cdots\!25}a^{17}+\frac{23\!\cdots\!43}{15\!\cdots\!25}a^{16}+\frac{74\!\cdots\!18}{50\!\cdots\!75}a^{15}-\frac{63\!\cdots\!37}{78\!\cdots\!25}a^{14}+\frac{45\!\cdots\!13}{60\!\cdots\!25}a^{13}-\frac{80\!\cdots\!04}{15\!\cdots\!25}a^{12}+\frac{10\!\cdots\!51}{15\!\cdots\!25}a^{11}+\frac{11\!\cdots\!86}{78\!\cdots\!25}a^{10}-\frac{35\!\cdots\!88}{78\!\cdots\!25}a^{9}+\frac{47\!\cdots\!84}{78\!\cdots\!25}a^{8}-\frac{28\!\cdots\!22}{33\!\cdots\!75}a^{7}+\frac{23\!\cdots\!73}{78\!\cdots\!25}a^{6}-\frac{18\!\cdots\!83}{78\!\cdots\!25}a^{5}-\frac{13\!\cdots\!58}{71\!\cdots\!75}a^{4}+\frac{21\!\cdots\!87}{78\!\cdots\!25}a^{3}+\frac{56\!\cdots\!18}{71\!\cdots\!75}a^{2}+\frac{41\!\cdots\!84}{15\!\cdots\!25}a+\frac{48\!\cdots\!19}{31\!\cdots\!25}$, $\frac{55\!\cdots\!17}{25\!\cdots\!25}a^{25}-\frac{35\!\cdots\!24}{25\!\cdots\!25}a^{24}+\frac{79\!\cdots\!41}{10\!\cdots\!25}a^{23}-\frac{85\!\cdots\!83}{23\!\cdots\!75}a^{22}+\frac{34\!\cdots\!13}{25\!\cdots\!25}a^{21}-\frac{21\!\cdots\!64}{51\!\cdots\!25}a^{20}+\frac{30\!\cdots\!56}{25\!\cdots\!25}a^{19}-\frac{68\!\cdots\!39}{25\!\cdots\!25}a^{18}+\frac{13\!\cdots\!79}{25\!\cdots\!25}a^{17}-\frac{31\!\cdots\!78}{33\!\cdots\!75}a^{16}+\frac{33\!\cdots\!93}{20\!\cdots\!75}a^{15}-\frac{13\!\cdots\!39}{36\!\cdots\!75}a^{14}+\frac{20\!\cdots\!08}{25\!\cdots\!25}a^{13}-\frac{88\!\cdots\!14}{51\!\cdots\!25}a^{12}+\frac{27\!\cdots\!83}{10\!\cdots\!25}a^{11}-\frac{96\!\cdots\!23}{25\!\cdots\!25}a^{10}+\frac{97\!\cdots\!29}{25\!\cdots\!25}a^{9}-\frac{72\!\cdots\!07}{25\!\cdots\!25}a^{8}+\frac{15\!\cdots\!73}{84\!\cdots\!75}a^{7}-\frac{25\!\cdots\!44}{25\!\cdots\!25}a^{6}+\frac{42\!\cdots\!89}{25\!\cdots\!25}a^{5}+\frac{13\!\cdots\!59}{23\!\cdots\!75}a^{4}-\frac{18\!\cdots\!11}{25\!\cdots\!25}a^{3}-\frac{75\!\cdots\!94}{23\!\cdots\!75}a^{2}-\frac{18\!\cdots\!72}{51\!\cdots\!25}a-\frac{21\!\cdots\!27}{10\!\cdots\!25}$, $\frac{27\!\cdots\!51}{71\!\cdots\!75}a^{25}-\frac{12\!\cdots\!32}{71\!\cdots\!75}a^{24}+\frac{33\!\cdots\!17}{28\!\cdots\!75}a^{23}-\frac{34\!\cdots\!39}{71\!\cdots\!75}a^{22}+\frac{13\!\cdots\!79}{71\!\cdots\!75}a^{21}-\frac{75\!\cdots\!79}{14\!\cdots\!75}a^{20}+\frac{11\!\cdots\!73}{71\!\cdots\!75}a^{19}-\frac{21\!\cdots\!62}{71\!\cdots\!75}a^{18}+\frac{48\!\cdots\!67}{71\!\cdots\!75}a^{17}-\frac{12\!\cdots\!17}{14\!\cdots\!75}a^{16}+\frac{95\!\cdots\!93}{45\!\cdots\!25}a^{15}-\frac{25\!\cdots\!22}{71\!\cdots\!75}a^{14}+\frac{22\!\cdots\!44}{23\!\cdots\!25}a^{13}-\frac{26\!\cdots\!49}{14\!\cdots\!75}a^{12}+\frac{44\!\cdots\!06}{14\!\cdots\!75}a^{11}-\frac{25\!\cdots\!59}{71\!\cdots\!75}a^{10}+\frac{14\!\cdots\!22}{71\!\cdots\!75}a^{9}+\frac{56\!\cdots\!34}{23\!\cdots\!25}a^{8}-\frac{13\!\cdots\!07}{30\!\cdots\!25}a^{7}+\frac{30\!\cdots\!63}{71\!\cdots\!75}a^{6}-\frac{27\!\cdots\!98}{71\!\cdots\!75}a^{5}+\frac{11\!\cdots\!72}{71\!\cdots\!75}a^{4}+\frac{39\!\cdots\!22}{71\!\cdots\!75}a^{3}+\frac{98\!\cdots\!13}{71\!\cdots\!75}a^{2}+\frac{14\!\cdots\!04}{14\!\cdots\!75}a+\frac{64\!\cdots\!64}{28\!\cdots\!75}$, $\frac{18\!\cdots\!31}{25\!\cdots\!75}a^{25}-\frac{27\!\cdots\!02}{78\!\cdots\!25}a^{24}+\frac{73\!\cdots\!77}{31\!\cdots\!25}a^{23}-\frac{70\!\cdots\!39}{71\!\cdots\!75}a^{22}+\frac{29\!\cdots\!44}{78\!\cdots\!25}a^{21}-\frac{17\!\cdots\!14}{15\!\cdots\!25}a^{20}+\frac{25\!\cdots\!78}{78\!\cdots\!25}a^{19}-\frac{52\!\cdots\!32}{78\!\cdots\!25}a^{18}+\frac{11\!\cdots\!12}{78\!\cdots\!25}a^{17}-\frac{37\!\cdots\!82}{15\!\cdots\!25}a^{16}+\frac{64\!\cdots\!12}{12\!\cdots\!75}a^{15}-\frac{74\!\cdots\!42}{78\!\cdots\!25}a^{14}+\frac{18\!\cdots\!54}{78\!\cdots\!25}a^{13}-\frac{69\!\cdots\!59}{15\!\cdots\!25}a^{12}+\frac{92\!\cdots\!02}{12\!\cdots\!25}a^{11}-\frac{82\!\cdots\!74}{78\!\cdots\!25}a^{10}+\frac{86\!\cdots\!17}{78\!\cdots\!25}a^{9}-\frac{73\!\cdots\!31}{78\!\cdots\!25}a^{8}+\frac{13\!\cdots\!33}{33\!\cdots\!75}a^{7}-\frac{51\!\cdots\!07}{78\!\cdots\!25}a^{6}-\frac{13\!\cdots\!06}{60\!\cdots\!25}a^{5}+\frac{18\!\cdots\!97}{71\!\cdots\!75}a^{4}-\frac{73\!\cdots\!08}{78\!\cdots\!25}a^{3}+\frac{27\!\cdots\!98}{23\!\cdots\!25}a^{2}+\frac{60\!\cdots\!63}{12\!\cdots\!25}a-\frac{41\!\cdots\!96}{31\!\cdots\!25}$, $\frac{66\!\cdots\!33}{78\!\cdots\!25}a^{25}-\frac{32\!\cdots\!81}{78\!\cdots\!25}a^{24}+\frac{79\!\cdots\!66}{31\!\cdots\!25}a^{23}-\frac{78\!\cdots\!42}{71\!\cdots\!75}a^{22}+\frac{10\!\cdots\!72}{25\!\cdots\!75}a^{21}-\frac{18\!\cdots\!22}{15\!\cdots\!25}a^{20}+\frac{25\!\cdots\!84}{78\!\cdots\!25}a^{19}-\frac{39\!\cdots\!67}{60\!\cdots\!25}a^{18}+\frac{10\!\cdots\!11}{78\!\cdots\!25}a^{17}-\frac{33\!\cdots\!51}{15\!\cdots\!25}a^{16}+\frac{41\!\cdots\!58}{96\!\cdots\!75}a^{15}-\frac{73\!\cdots\!51}{78\!\cdots\!25}a^{14}+\frac{16\!\cdots\!12}{78\!\cdots\!25}a^{13}-\frac{65\!\cdots\!57}{15\!\cdots\!25}a^{12}+\frac{97\!\cdots\!68}{15\!\cdots\!25}a^{11}-\frac{15\!\cdots\!99}{19\!\cdots\!75}a^{10}+\frac{51\!\cdots\!01}{78\!\cdots\!25}a^{9}-\frac{33\!\cdots\!68}{78\!\cdots\!25}a^{8}+\frac{55\!\cdots\!64}{33\!\cdots\!75}a^{7}+\frac{84\!\cdots\!29}{78\!\cdots\!25}a^{6}-\frac{20\!\cdots\!09}{78\!\cdots\!25}a^{5}+\frac{12\!\cdots\!41}{71\!\cdots\!75}a^{4}-\frac{69\!\cdots\!99}{78\!\cdots\!25}a^{3}-\frac{55\!\cdots\!86}{71\!\cdots\!75}a^{2}-\frac{10\!\cdots\!43}{15\!\cdots\!25}a-\frac{14\!\cdots\!88}{31\!\cdots\!25}$, $\frac{33\!\cdots\!76}{78\!\cdots\!25}a^{25}-\frac{69\!\cdots\!07}{78\!\cdots\!25}a^{24}+\frac{27\!\cdots\!17}{31\!\cdots\!25}a^{23}-\frac{17\!\cdots\!24}{71\!\cdots\!75}a^{22}+\frac{68\!\cdots\!04}{78\!\cdots\!25}a^{21}-\frac{24\!\cdots\!54}{15\!\cdots\!25}a^{20}+\frac{13\!\cdots\!58}{25\!\cdots\!75}a^{19}+\frac{12\!\cdots\!88}{78\!\cdots\!25}a^{18}+\frac{10\!\cdots\!92}{78\!\cdots\!25}a^{17}+\frac{61\!\cdots\!58}{15\!\cdots\!25}a^{16}+\frac{13\!\cdots\!48}{25\!\cdots\!75}a^{15}+\frac{41\!\cdots\!53}{78\!\cdots\!25}a^{14}+\frac{19\!\cdots\!64}{78\!\cdots\!25}a^{13}+\frac{29\!\cdots\!01}{15\!\cdots\!25}a^{12}-\frac{69\!\cdots\!94}{15\!\cdots\!25}a^{11}+\frac{16\!\cdots\!91}{78\!\cdots\!25}a^{10}-\frac{31\!\cdots\!03}{78\!\cdots\!25}a^{9}+\frac{35\!\cdots\!04}{78\!\cdots\!25}a^{8}-\frac{19\!\cdots\!07}{33\!\cdots\!75}a^{7}+\frac{17\!\cdots\!13}{78\!\cdots\!25}a^{6}-\frac{14\!\cdots\!48}{78\!\cdots\!25}a^{5}-\frac{19\!\cdots\!73}{71\!\cdots\!75}a^{4}+\frac{10\!\cdots\!47}{78\!\cdots\!25}a^{3}+\frac{66\!\cdots\!83}{71\!\cdots\!75}a^{2}+\frac{17\!\cdots\!79}{15\!\cdots\!25}a+\frac{24\!\cdots\!64}{31\!\cdots\!25}$, $\frac{14\!\cdots\!06}{78\!\cdots\!25}a^{25}-\frac{47\!\cdots\!92}{78\!\cdots\!25}a^{24}+\frac{11\!\cdots\!64}{24\!\cdots\!25}a^{23}-\frac{12\!\cdots\!94}{71\!\cdots\!75}a^{22}+\frac{38\!\cdots\!48}{60\!\cdots\!25}a^{21}-\frac{19\!\cdots\!78}{12\!\cdots\!25}a^{20}+\frac{39\!\cdots\!88}{78\!\cdots\!25}a^{19}-\frac{56\!\cdots\!72}{78\!\cdots\!25}a^{18}+\frac{15\!\cdots\!52}{78\!\cdots\!25}a^{17}-\frac{25\!\cdots\!42}{15\!\cdots\!25}a^{16}+\frac{88\!\cdots\!69}{12\!\cdots\!75}a^{15}-\frac{70\!\cdots\!32}{78\!\cdots\!25}a^{14}+\frac{25\!\cdots\!09}{78\!\cdots\!25}a^{13}-\frac{68\!\cdots\!09}{15\!\cdots\!25}a^{12}+\frac{11\!\cdots\!31}{15\!\cdots\!25}a^{11}-\frac{49\!\cdots\!54}{78\!\cdots\!25}a^{10}+\frac{15\!\cdots\!32}{78\!\cdots\!25}a^{9}+\frac{11\!\cdots\!49}{78\!\cdots\!25}a^{8}-\frac{36\!\cdots\!22}{33\!\cdots\!75}a^{7}+\frac{30\!\cdots\!03}{78\!\cdots\!25}a^{6}-\frac{49\!\cdots\!13}{78\!\cdots\!25}a^{5}-\frac{40\!\cdots\!13}{71\!\cdots\!75}a^{4}+\frac{33\!\cdots\!82}{78\!\cdots\!25}a^{3}+\frac{20\!\cdots\!23}{71\!\cdots\!75}a^{2}+\frac{80\!\cdots\!74}{15\!\cdots\!25}a+\frac{71\!\cdots\!59}{31\!\cdots\!25}$, $\frac{89\!\cdots\!57}{15\!\cdots\!25}a^{25}-\frac{13\!\cdots\!29}{50\!\cdots\!75}a^{24}+\frac{11\!\cdots\!99}{62\!\cdots\!25}a^{23}-\frac{11\!\cdots\!68}{14\!\cdots\!75}a^{22}+\frac{46\!\cdots\!03}{15\!\cdots\!25}a^{21}-\frac{27\!\cdots\!43}{31\!\cdots\!25}a^{20}+\frac{41\!\cdots\!36}{15\!\cdots\!25}a^{19}-\frac{84\!\cdots\!84}{15\!\cdots\!25}a^{18}+\frac{19\!\cdots\!94}{15\!\cdots\!25}a^{17}-\frac{59\!\cdots\!84}{31\!\cdots\!25}a^{16}+\frac{10\!\cdots\!99}{25\!\cdots\!75}a^{15}-\frac{37\!\cdots\!34}{50\!\cdots\!75}a^{14}+\frac{28\!\cdots\!98}{15\!\cdots\!25}a^{13}-\frac{35\!\cdots\!68}{10\!\cdots\!75}a^{12}+\frac{19\!\cdots\!62}{31\!\cdots\!25}a^{11}-\frac{13\!\cdots\!13}{15\!\cdots\!25}a^{10}+\frac{13\!\cdots\!54}{15\!\cdots\!25}a^{9}-\frac{10\!\cdots\!22}{15\!\cdots\!25}a^{8}+\frac{17\!\cdots\!96}{66\!\cdots\!75}a^{7}+\frac{48\!\cdots\!91}{15\!\cdots\!25}a^{6}-\frac{11\!\cdots\!06}{50\!\cdots\!75}a^{5}+\frac{28\!\cdots\!89}{14\!\cdots\!75}a^{4}-\frac{10\!\cdots\!21}{15\!\cdots\!25}a^{3}+\frac{10\!\cdots\!31}{14\!\cdots\!75}a^{2}+\frac{10\!\cdots\!78}{31\!\cdots\!25}a-\frac{26\!\cdots\!77}{62\!\cdots\!25}$, $\frac{41\!\cdots\!43}{60\!\cdots\!25}a^{25}-\frac{23\!\cdots\!13}{78\!\cdots\!25}a^{24}+\frac{62\!\cdots\!28}{31\!\cdots\!25}a^{23}-\frac{57\!\cdots\!41}{71\!\cdots\!75}a^{22}+\frac{23\!\cdots\!86}{78\!\cdots\!25}a^{21}-\frac{13\!\cdots\!11}{15\!\cdots\!25}a^{20}+\frac{19\!\cdots\!32}{78\!\cdots\!25}a^{19}-\frac{36\!\cdots\!08}{78\!\cdots\!25}a^{18}+\frac{83\!\cdots\!78}{78\!\cdots\!25}a^{17}-\frac{17\!\cdots\!06}{12\!\cdots\!25}a^{16}+\frac{88\!\cdots\!64}{25\!\cdots\!75}a^{15}-\frac{49\!\cdots\!23}{78\!\cdots\!25}a^{14}+\frac{12\!\cdots\!26}{78\!\cdots\!25}a^{13}-\frac{45\!\cdots\!41}{15\!\cdots\!25}a^{12}+\frac{76\!\cdots\!29}{15\!\cdots\!25}a^{11}-\frac{44\!\cdots\!81}{78\!\cdots\!25}a^{10}+\frac{37\!\cdots\!48}{78\!\cdots\!25}a^{9}-\frac{17\!\cdots\!53}{60\!\cdots\!25}a^{8}-\frac{30\!\cdots\!13}{33\!\cdots\!75}a^{7}+\frac{10\!\cdots\!42}{78\!\cdots\!25}a^{6}-\frac{17\!\cdots\!07}{78\!\cdots\!25}a^{5}+\frac{58\!\cdots\!93}{71\!\cdots\!75}a^{4}+\frac{20\!\cdots\!23}{78\!\cdots\!25}a^{3}+\frac{26\!\cdots\!44}{54\!\cdots\!75}a^{2}+\frac{16\!\cdots\!61}{15\!\cdots\!25}a+\frac{97\!\cdots\!51}{31\!\cdots\!25}$, $\frac{48\!\cdots\!67}{71\!\cdots\!75}a^{25}-\frac{20\!\cdots\!69}{71\!\cdots\!75}a^{24}+\frac{59\!\cdots\!54}{28\!\cdots\!75}a^{23}-\frac{60\!\cdots\!38}{71\!\cdots\!75}a^{22}+\frac{23\!\cdots\!43}{71\!\cdots\!75}a^{21}-\frac{14\!\cdots\!63}{14\!\cdots\!75}a^{20}+\frac{21\!\cdots\!16}{71\!\cdots\!75}a^{19}-\frac{44\!\cdots\!04}{71\!\cdots\!75}a^{18}+\frac{11\!\cdots\!64}{71\!\cdots\!75}a^{17}-\frac{47\!\cdots\!04}{20\!\cdots\!25}a^{16}+\frac{64\!\cdots\!57}{11\!\cdots\!25}a^{15}-\frac{66\!\cdots\!24}{71\!\cdots\!75}a^{14}+\frac{12\!\cdots\!01}{54\!\cdots\!75}a^{13}-\frac{60\!\cdots\!03}{14\!\cdots\!75}a^{12}+\frac{11\!\cdots\!62}{14\!\cdots\!75}a^{11}-\frac{85\!\cdots\!03}{71\!\cdots\!75}a^{10}+\frac{10\!\cdots\!24}{71\!\cdots\!75}a^{9}-\frac{11\!\cdots\!07}{71\!\cdots\!75}a^{8}+\frac{35\!\cdots\!16}{30\!\cdots\!25}a^{7}-\frac{63\!\cdots\!54}{71\!\cdots\!75}a^{6}+\frac{18\!\cdots\!34}{71\!\cdots\!75}a^{5}-\frac{32\!\cdots\!51}{71\!\cdots\!75}a^{4}-\frac{58\!\cdots\!76}{71\!\cdots\!75}a^{3}+\frac{17\!\cdots\!46}{71\!\cdots\!75}a^{2}+\frac{21\!\cdots\!43}{14\!\cdots\!75}a+\frac{24\!\cdots\!88}{28\!\cdots\!75}$, $\frac{41\!\cdots\!69}{15\!\cdots\!25}a^{25}-\frac{90\!\cdots\!08}{15\!\cdots\!25}a^{24}+\frac{25\!\cdots\!91}{48\!\cdots\!25}a^{23}-\frac{21\!\cdots\!56}{14\!\cdots\!75}a^{22}+\frac{62\!\cdots\!02}{12\!\cdots\!25}a^{21}-\frac{20\!\cdots\!77}{24\!\cdots\!25}a^{20}+\frac{43\!\cdots\!37}{15\!\cdots\!25}a^{19}+\frac{40\!\cdots\!22}{15\!\cdots\!25}a^{18}+\frac{38\!\cdots\!23}{15\!\cdots\!25}a^{17}+\frac{10\!\cdots\!02}{31\!\cdots\!25}a^{16}+\frac{54\!\cdots\!98}{50\!\cdots\!75}a^{15}+\frac{88\!\cdots\!82}{15\!\cdots\!25}a^{14}+\frac{16\!\cdots\!91}{15\!\cdots\!25}a^{13}+\frac{73\!\cdots\!69}{31\!\cdots\!25}a^{12}-\frac{18\!\cdots\!86}{31\!\cdots\!25}a^{11}+\frac{30\!\cdots\!79}{15\!\cdots\!25}a^{10}-\frac{53\!\cdots\!07}{15\!\cdots\!25}a^{9}+\frac{58\!\cdots\!51}{15\!\cdots\!25}a^{8}-\frac{25\!\cdots\!83}{66\!\cdots\!75}a^{7}+\frac{10\!\cdots\!72}{15\!\cdots\!25}a^{6}+\frac{19\!\cdots\!38}{15\!\cdots\!25}a^{5}-\frac{22\!\cdots\!12}{14\!\cdots\!75}a^{4}+\frac{21\!\cdots\!93}{15\!\cdots\!25}a^{3}+\frac{23\!\cdots\!77}{14\!\cdots\!75}a^{2}+\frac{25\!\cdots\!26}{31\!\cdots\!25}a+\frac{50\!\cdots\!41}{62\!\cdots\!25}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 195886918009.72314 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{13}\cdot 195886918009.72314 \cdot 3}{2\cdot\sqrt{105838418476275527898387851073846090273368671}}\cr\approx \mathstrut & 0.679380864292949 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 4*x^25 + 29*x^24 - 114*x^23 + 437*x^22 - 1233*x^21 + 3738*x^20 - 6943*x^19 + 17106*x^18 - 22984*x^17 + 59870*x^16 - 97147*x^15 + 263098*x^14 - 450753*x^13 + 813670*x^12 - 1048444*x^11 + 1103470*x^10 - 985605*x^9 + 369592*x^8 - 235197*x^7 - 276734*x^6 + 186178*x^5 - 88862*x^4 + 240404*x^3 + 178609*x^2 + 96160*x + 61675);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{26}$ (as 26T3):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 52
The 16 conjugacy class representatives for $D_{26}$
Character table for $D_{26}$

Intermediate fields

\(\Q(\sqrt{-31}) \), 13.1.1847739844104888853729.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 26 sibling: deg 26
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/5.2.0.1}{2} }^{12}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ ${\href{/padicField/7.13.0.1}{13} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{13}$ ${\href{/padicField/13.2.0.1}{2} }^{13}$ $26$ ${\href{/padicField/19.2.0.1}{2} }^{12}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $26$ $26$ R $26$ ${\href{/padicField/41.13.0.1}{13} }^{2}$ $26$ ${\href{/padicField/47.2.0.1}{2} }^{12}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{13}$ ${\href{/padicField/59.2.0.1}{2} }^{12}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(31\) Copy content Toggle raw display 31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 31$$2$$1$$1$$C_2$$[\ ]_{2}$
\(113\) Copy content Toggle raw display $\Q_{113}$$x + 110$$1$$1$$0$Trivial$[\ ]$
$\Q_{113}$$x + 110$$1$$1$$0$Trivial$[\ ]$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$
113.2.1.1$x^{2} + 113$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.113.2t1.a.a$1$ $ 113 $ \(\Q(\sqrt{113}) \) $C_2$ (as 2T1) $1$ $1$
1.3503.2t1.a.a$1$ $ 31 \cdot 113 $ \(\Q(\sqrt{-3503}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.31.2t1.a.a$1$ $ 31 $ \(\Q(\sqrt{-31}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3503.26t3.a.a$2$ $ 31 \cdot 113 $ 26.0.105838418476275527898387851073846090273368671.1 $D_{26}$ (as 26T3) $1$ $0$
* 2.3503.13t2.a.d$2$ $ 31 \cdot 113 $ 13.1.1847739844104888853729.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.3503.13t2.a.a$2$ $ 31 \cdot 113 $ 13.1.1847739844104888853729.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.3503.26t3.a.d$2$ $ 31 \cdot 113 $ 26.0.105838418476275527898387851073846090273368671.1 $D_{26}$ (as 26T3) $1$ $0$
* 2.3503.13t2.a.e$2$ $ 31 \cdot 113 $ 13.1.1847739844104888853729.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.3503.26t3.a.b$2$ $ 31 \cdot 113 $ 26.0.105838418476275527898387851073846090273368671.1 $D_{26}$ (as 26T3) $1$ $0$
* 2.3503.13t2.a.c$2$ $ 31 \cdot 113 $ 13.1.1847739844104888853729.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.3503.13t2.a.f$2$ $ 31 \cdot 113 $ 13.1.1847739844104888853729.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.3503.13t2.a.b$2$ $ 31 \cdot 113 $ 13.1.1847739844104888853729.1 $D_{13}$ (as 13T2) $1$ $0$
* 2.3503.26t3.a.f$2$ $ 31 \cdot 113 $ 26.0.105838418476275527898387851073846090273368671.1 $D_{26}$ (as 26T3) $1$ $0$
* 2.3503.26t3.a.e$2$ $ 31 \cdot 113 $ 26.0.105838418476275527898387851073846090273368671.1 $D_{26}$ (as 26T3) $1$ $0$
* 2.3503.26t3.a.c$2$ $ 31 \cdot 113 $ 26.0.105838418476275527898387851073846090273368671.1 $D_{26}$ (as 26T3) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.