Normalized defining polynomial
\(x^{25} - 5 x^{24} + 10 x^{23} - 10 x^{22} + 17 x^{20} - 25 x^{19} + 10 x^{18} + 55 x^{17} - 150 x^{16} + 156 x^{15} - 100 x^{14} + 115 x^{13} - 60 x^{12} - 175 x^{11} + 208 x^{10} + 70 x^{9} - 80 x^{8} - 70 x^{7} - 25 x^{6} + 20 x^{5} + 15 x^{4} + 15 x^{3} + 10 x^{2} - 1\)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[5, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(9536743164062500000000000000000000\)\(\medspace = 2^{20}\cdot 5^{40}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $22.87$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 5$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $5$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} - \frac{3}{7} a^{17} + \frac{2}{7} a^{16} + \frac{1}{7} a^{15} - \frac{1}{7} a^{14} + \frac{2}{7} a^{13} - \frac{2}{7} a^{12} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{19} + \frac{2}{7} a^{15} - \frac{1}{7} a^{14} - \frac{3}{7} a^{13} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{20} + \frac{2}{7} a^{16} - \frac{1}{7} a^{15} - \frac{3}{7} a^{14} - \frac{1}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{7} a^{21} + \frac{2}{7} a^{17} - \frac{1}{7} a^{16} - \frac{3}{7} a^{15} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2}$, $\frac{1}{301} a^{22} + \frac{16}{301} a^{21} + \frac{3}{301} a^{20} + \frac{17}{301} a^{19} + \frac{1}{301} a^{18} - \frac{15}{301} a^{17} - \frac{148}{301} a^{16} + \frac{17}{301} a^{15} - \frac{74}{301} a^{14} - \frac{54}{301} a^{13} - \frac{87}{301} a^{12} + \frac{61}{301} a^{11} + \frac{118}{301} a^{10} - \frac{6}{301} a^{9} + \frac{6}{43} a^{8} + \frac{108}{301} a^{7} + \frac{69}{301} a^{6} - \frac{148}{301} a^{5} + \frac{90}{301} a^{4} + \frac{3}{43} a^{3} - \frac{52}{301} a^{2} - \frac{17}{301} a - \frac{110}{301}$, $\frac{1}{18737551} a^{23} + \frac{8378}{18737551} a^{22} + \frac{1093985}{18737551} a^{21} - \frac{613619}{18737551} a^{20} + \frac{305168}{18737551} a^{19} + \frac{516865}{18737551} a^{18} + \frac{1077043}{2676793} a^{17} - \frac{8950426}{18737551} a^{16} + \frac{9172553}{18737551} a^{15} - \frac{809215}{2676793} a^{14} - \frac{608714}{18737551} a^{13} + \frac{4974453}{18737551} a^{12} - \frac{2701599}{18737551} a^{11} - \frac{4277866}{18737551} a^{10} + \frac{3918856}{18737551} a^{9} + \frac{3623784}{18737551} a^{8} + \frac{815574}{18737551} a^{7} + \frac{668869}{2676793} a^{6} - \frac{2115030}{18737551} a^{5} - \frac{5588738}{18737551} a^{4} - \frac{4395135}{18737551} a^{3} - \frac{2394695}{18737551} a^{2} - \frac{6760265}{18737551} a - \frac{3989332}{18737551}$, $\frac{1}{5640002851} a^{24} + \frac{120}{5640002851} a^{23} + \frac{3310358}{5640002851} a^{22} - \frac{383907032}{5640002851} a^{21} - \frac{232417019}{5640002851} a^{20} + \frac{396712118}{5640002851} a^{19} + \frac{262176787}{5640002851} a^{18} + \frac{1112295315}{5640002851} a^{17} - \frac{1686406609}{5640002851} a^{16} + \frac{1019061081}{5640002851} a^{15} + \frac{60076050}{131162857} a^{14} - \frac{1567680598}{5640002851} a^{13} - \frac{1627610932}{5640002851} a^{12} - \frac{722549997}{5640002851} a^{11} + \frac{2289759767}{5640002851} a^{10} + \frac{1379885406}{5640002851} a^{9} + \frac{2104307061}{5640002851} a^{8} + \frac{1519112260}{5640002851} a^{7} - \frac{42682088}{131162857} a^{6} - \frac{2267137400}{5640002851} a^{5} + \frac{1390615046}{5640002851} a^{4} - \frac{1647798090}{5640002851} a^{3} + \frac{16388745}{5640002851} a^{2} + \frac{2108505680}{5640002851} a - \frac{650346502}{5640002851}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 22714715.777837068 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_5\times D_5$ (as 25T3):
A solvable group of order 50 |
The 20 conjugacy class representatives for $C_5\times D_5$ |
Character table for $C_5\times D_5$ |
Intermediate fields
5.5.390625.1, 5.1.6250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 10 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
5 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.25.5t1.a.d | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
1.100.10t1.a.b | $1$ | $ 2^{2} \cdot 5^{2}$ | 10.0.156250000000000.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
* | 1.25.5t1.a.a | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.25.5t1.a.b | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
1.100.10t1.a.c | $1$ | $ 2^{2} \cdot 5^{2}$ | 10.0.156250000000000.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
1.100.10t1.a.a | $1$ | $ 2^{2} \cdot 5^{2}$ | 10.0.156250000000000.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
1.100.10t1.a.d | $1$ | $ 2^{2} \cdot 5^{2}$ | 10.0.156250000000000.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
* | 1.25.5t1.a.c | $1$ | $ 5^{2}$ | 5.5.390625.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 2.2500.5t2.a.a | $2$ | $ 2^{2} \cdot 5^{4}$ | 5.1.6250000.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.2500.10t6.a.d | $2$ | $ 2^{2} \cdot 5^{4}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.2500.10t6.a.a | $2$ | $ 2^{2} \cdot 5^{4}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.100.10t6.a.a | $2$ | $ 2^{2} \cdot 5^{2}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.2500.10t6.a.c | $2$ | $ 2^{2} \cdot 5^{4}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.100.10t6.a.c | $2$ | $ 2^{2} \cdot 5^{2}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.100.10t6.a.d | $2$ | $ 2^{2} \cdot 5^{2}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.2500.5t2.a.b | $2$ | $ 2^{2} \cdot 5^{4}$ | 5.1.6250000.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.100.10t6.a.b | $2$ | $ 2^{2} \cdot 5^{2}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.2500.10t6.a.b | $2$ | $ 2^{2} \cdot 5^{4}$ | 25.5.9536743164062500000000000000000000.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |