Normalized defining polynomial
\( x^{25} - 4 x^{24} + 4 x^{23} + 5 x^{22} - 20 x^{21} + 18 x^{20} + 19 x^{19} - 28 x^{18} - 2 x^{16} + 2 x^{15} - 28 x^{14} - 29 x^{13} + 120 x^{12} + 59 x^{11} - 112 x^{10} - 35 x^{9} + 16 x^{8} - 23 x^{7} + 29 x^{6} + 32 x^{5} - 21 x^{4} - 12 x^{3} + 7 x^{2} + 2 x - 1 \)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[5, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(190035222333323626806494766049\)\(\medspace = 7^{10}\cdot 11^{20}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $14.83$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $7, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $5$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1422429784482782} a^{24} + \frac{140614422730571}{1422429784482782} a^{23} - \frac{104578792346784}{711214892241391} a^{22} - \frac{165233546399600}{711214892241391} a^{21} - \frac{144093055169530}{711214892241391} a^{20} - \frac{144067137096092}{711214892241391} a^{19} + \frac{328858474526599}{711214892241391} a^{18} + \frac{11388431288854}{711214892241391} a^{17} + \frac{554089679032639}{1422429784482782} a^{16} - \frac{249580344224563}{711214892241391} a^{15} - \frac{61285048475461}{711214892241391} a^{14} - \frac{195315440452465}{711214892241391} a^{13} + \frac{690630018986355}{1422429784482782} a^{12} + \frac{124898007688931}{711214892241391} a^{11} - \frac{428902554332149}{1422429784482782} a^{10} + \frac{638431435676121}{1422429784482782} a^{9} + \frac{261915975651208}{711214892241391} a^{8} + \frac{169378685340181}{1422429784482782} a^{7} + \frac{47853678613913}{1422429784482782} a^{6} - \frac{256967440247395}{711214892241391} a^{5} - \frac{168316319972885}{1422429784482782} a^{4} - \frac{249305403652881}{711214892241391} a^{3} + \frac{87804121646247}{711214892241391} a^{2} - \frac{188177807611685}{711214892241391} a + \frac{685877223418807}{1422429784482782}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 40076.42524869914 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_5\times D_5$ (as 25T3):
A solvable group of order 50 |
The 20 conjugacy class representatives for $C_5\times D_5$ |
Character table for $C_5\times D_5$ |
Intermediate fields
\(\Q(\zeta_{11})^+\), 5.1.717409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 10 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$7$ | 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
11 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.77.10t1.a.b | $1$ | $ 7 \cdot 11 $ | 10.0.3602729712967.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
* | 1.11.5t1.a.a | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.5t1.a.c | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
1.77.10t1.a.d | $1$ | $ 7 \cdot 11 $ | 10.0.3602729712967.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
1.77.10t1.a.a | $1$ | $ 7 \cdot 11 $ | 10.0.3602729712967.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
1.77.10t1.a.c | $1$ | $ 7 \cdot 11 $ | 10.0.3602729712967.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
* | 1.11.5t1.a.b | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.5t1.a.d | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 2.77.10t6.a.c | $2$ | $ 7 \cdot 11 $ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.847.10t6.a.a | $2$ | $ 7 \cdot 11^{2}$ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.847.5t2.a.b | $2$ | $ 7 \cdot 11^{2}$ | 5.1.717409.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.847.10t6.a.c | $2$ | $ 7 \cdot 11^{2}$ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.847.10t6.a.b | $2$ | $ 7 \cdot 11^{2}$ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.847.10t6.a.d | $2$ | $ 7 \cdot 11^{2}$ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.77.10t6.a.b | $2$ | $ 7 \cdot 11 $ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.77.10t6.a.a | $2$ | $ 7 \cdot 11 $ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.847.5t2.a.a | $2$ | $ 7 \cdot 11^{2}$ | 5.1.717409.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.77.10t6.a.d | $2$ | $ 7 \cdot 11 $ | 25.5.190035222333323626806494766049.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |