Normalized defining polynomial
\( x^{25} - 2 x^{24} - 2 x^{23} - 10 x^{22} + 33 x^{21} + 5 x^{20} - 6 x^{19} - 115 x^{18} - 16 x^{17} + 168 x^{16} + 250 x^{15} - 16 x^{14} + 291 x^{13} - 1042 x^{12} + 750 x^{11} - 1666 x^{10} + 1541 x^{9} - 903 x^{8} + 418 x^{7} + 161 x^{6} - 27 x^{5} + 92 x^{4} + 3 x^{3} + 8 x^{2} + 4 x - 1 \)
Invariants
Degree: | $25$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[5, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(188919613181312032574569023867244773376\)\(\medspace = 2^{20}\cdot 41^{20}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $33.97$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 41$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $5$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{4}{9} a^{6} + \frac{4}{9} a^{4} - \frac{4}{9} a^{2} + \frac{4}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{4}{9} a^{7} + \frac{4}{9} a^{5} - \frac{4}{9} a^{3} + \frac{4}{9} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} + \frac{1}{9} a^{13} + \frac{1}{27} a^{11} - \frac{1}{9} a^{10} - \frac{2}{27} a^{9} + \frac{2}{27} a^{8} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{2}{27} a^{3} + \frac{4}{9} a^{2} - \frac{8}{27} a - \frac{10}{27}$, $\frac{1}{27} a^{20} + \frac{1}{27} a^{18} - \frac{1}{27} a^{17} + \frac{4}{27} a^{12} - \frac{1}{9} a^{11} + \frac{4}{27} a^{10} + \frac{2}{27} a^{9} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{13}{27} a^{4} + \frac{4}{9} a^{3} - \frac{5}{27} a^{2} - \frac{10}{27} a - \frac{4}{9}$, $\frac{1}{27} a^{21} - \frac{1}{27} a^{18} - \frac{1}{27} a^{17} + \frac{1}{27} a^{16} + \frac{1}{27} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{4}{27} a^{10} - \frac{4}{27} a^{9} - \frac{2}{27} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{7}{27} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{13}{27} a^{2} + \frac{5}{27} a + \frac{1}{27}$, $\frac{1}{27} a^{22} - \frac{1}{27} a^{18} - \frac{1}{27} a^{17} - \frac{1}{27} a^{16} + \frac{1}{27} a^{14} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{2}{27} a^{10} + \frac{2}{27} a^{9} + \frac{2}{27} a^{8} - \frac{1}{3} a^{7} - \frac{2}{27} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} + \frac{4}{9} a^{3} + \frac{8}{27} a^{2} - \frac{10}{27} a + \frac{8}{27}$, $\frac{1}{243} a^{23} - \frac{1}{243} a^{22} - \frac{1}{243} a^{21} - \frac{4}{243} a^{20} - \frac{1}{81} a^{18} + \frac{1}{27} a^{17} - \frac{13}{243} a^{16} - \frac{2}{243} a^{15} + \frac{5}{243} a^{14} + \frac{8}{243} a^{13} + \frac{11}{243} a^{12} + \frac{7}{81} a^{11} - \frac{1}{9} a^{9} - \frac{1}{243} a^{8} + \frac{91}{243} a^{7} - \frac{58}{243} a^{6} - \frac{25}{243} a^{5} + \frac{83}{243} a^{4} + \frac{29}{81} a^{3} + \frac{25}{81} a^{2} - \frac{1}{3} a - \frac{13}{243}$, $\frac{1}{63037299496134907413} a^{24} + \frac{9427940055707662}{21012433165378302471} a^{23} + \frac{358581875759631427}{63037299496134907413} a^{22} + \frac{45485323642375102}{63037299496134907413} a^{21} + \frac{844871820261555629}{63037299496134907413} a^{20} + \frac{250166720875192742}{21012433165378302471} a^{19} - \frac{38592183794982238}{21012433165378302471} a^{18} - \frac{1739799531437674297}{63037299496134907413} a^{17} - \frac{281224838037817463}{7004144388459434157} a^{16} + \frac{1078413241808969117}{21012433165378302471} a^{15} - \frac{71256602451808061}{63037299496134907413} a^{14} + \frac{1191123346874256475}{63037299496134907413} a^{13} - \frac{332133245184295717}{63037299496134907413} a^{12} - \frac{1585551273144235412}{21012433165378302471} a^{11} + \frac{30045630546637568}{2334714796153144719} a^{10} - \frac{6567243915847655107}{63037299496134907413} a^{9} - \frac{3208842231129570820}{21012433165378302471} a^{8} - \frac{1601735155552745030}{7004144388459434157} a^{7} + \frac{11801431537411172800}{63037299496134907413} a^{6} + \frac{13576898936438163235}{63037299496134907413} a^{5} - \frac{1884015453554317759}{63037299496134907413} a^{4} + \frac{770768142286787159}{2334714796153144719} a^{3} + \frac{7869917667140260525}{21012433165378302471} a^{2} + \frac{19910342011098244208}{63037299496134907413} a + \frac{12783195893832686228}{63037299496134907413}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 28022710779.842506 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_5\times D_5$ (as 25T3):
A solvable group of order 50 |
The 20 conjugacy class representatives for $C_5\times D_5$ |
Character table for $C_5\times D_5$ |
Intermediate fields
5.5.2825761.1, 5.1.45212176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 10 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
41 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.41.5t1.a.b | $1$ | $ 41 $ | 5.5.2825761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.41.5t1.a.c | $1$ | $ 41 $ | 5.5.2825761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.41.5t1.a.a | $1$ | $ 41 $ | 5.5.2825761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
1.164.10t1.a.d | $1$ | $ 2^{2} \cdot 41 $ | 10.0.8176563434619904.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
1.164.10t1.a.a | $1$ | $ 2^{2} \cdot 41 $ | 10.0.8176563434619904.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
* | 1.41.5t1.a.d | $1$ | $ 41 $ | 5.5.2825761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
1.164.10t1.a.c | $1$ | $ 2^{2} \cdot 41 $ | 10.0.8176563434619904.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
1.164.10t1.a.b | $1$ | $ 2^{2} \cdot 41 $ | 10.0.8176563434619904.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ | |
* | 2.6724.10t6.a.d | $2$ | $ 2^{2} \cdot 41^{2}$ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.6724.10t6.a.c | $2$ | $ 2^{2} \cdot 41^{2}$ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.164.10t6.a.b | $2$ | $ 2^{2} \cdot 41 $ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.164.10t6.a.a | $2$ | $ 2^{2} \cdot 41 $ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.6724.5t2.a.b | $2$ | $ 2^{2} \cdot 41^{2}$ | 5.1.45212176.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.6724.10t6.a.b | $2$ | $ 2^{2} \cdot 41^{2}$ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.164.10t6.a.d | $2$ | $ 2^{2} \cdot 41 $ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.6724.5t2.a.a | $2$ | $ 2^{2} \cdot 41^{2}$ | 5.1.45212176.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.164.10t6.a.c | $2$ | $ 2^{2} \cdot 41 $ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |
* | 2.6724.10t6.a.a | $2$ | $ 2^{2} \cdot 41^{2}$ | 25.5.188919613181312032574569023867244773376.1 | $C_5\times D_5$ (as 25T3) | $0$ | $0$ |