Normalized defining polynomial
\( x^{25} - 164 x^{23} - 272 x^{22} + 10686 x^{21} + 33950 x^{20} - 328747 x^{19} - 1607358 x^{18} + 4077128 x^{17} + 35351982 x^{16} + 11554131 x^{15} - 347862808 x^{14} - 688461999 x^{13} + 1048835196 x^{12} + 4696914774 x^{11} + 2103035116 x^{10} - 10682929821 x^{9} - 15119768150 x^{8} + 3751400425 x^{7} + 21035443090 x^{6} + 11310231959 x^{5} - 5969323408 x^{4} - 7701909436 x^{3} - 1993261592 x^{2} + 164644368 x + 73350496 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7128869711569640297994415184144957376207195381442155291601=11^{20}\cdot 71^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $206.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(781=11\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{781}(1,·)$, $\chi_{781}(196,·)$, $\chi_{781}(5,·)$, $\chi_{781}(199,·)$, $\chi_{781}(522,·)$, $\chi_{781}(267,·)$, $\chi_{781}(147,·)$, $\chi_{781}(214,·)$, $\chi_{781}(664,·)$, $\chi_{781}(25,·)$, $\chi_{781}(218,·)$, $\chi_{781}(412,·)$, $\chi_{781}(735,·)$, $\chi_{781}(289,·)$, $\chi_{781}(356,·)$, $\chi_{781}(551,·)$, $\chi_{781}(554,·)$, $\chi_{781}(427,·)$, $\chi_{781}(125,·)$, $\chi_{781}(625,·)$, $\chi_{781}(498,·)$, $\chi_{781}(309,·)$, $\chi_{781}(696,·)$, $\chi_{781}(764,·)$, $\chi_{781}(573,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{138} a^{15} - \frac{3}{46} a^{14} + \frac{2}{69} a^{13} + \frac{4}{23} a^{12} + \frac{1}{46} a^{11} + \frac{21}{46} a^{10} - \frac{13}{138} a^{9} + \frac{5}{46} a^{8} + \frac{2}{69} a^{7} + \frac{59}{138} a^{6} + \frac{26}{69} a^{5} - \frac{32}{69} a^{4} - \frac{21}{46} a^{3} + \frac{9}{46} a^{2} + \frac{2}{23} a + \frac{1}{3}$, $\frac{1}{138} a^{16} - \frac{4}{69} a^{14} - \frac{3}{46} a^{13} + \frac{2}{23} a^{12} + \frac{7}{46} a^{11} - \frac{67}{138} a^{10} + \frac{6}{23} a^{9} + \frac{1}{138} a^{8} - \frac{43}{138} a^{7} + \frac{31}{138} a^{6} - \frac{5}{69} a^{5} - \frac{3}{23} a^{4} + \frac{2}{23} a^{3} + \frac{8}{23} a^{2} + \frac{8}{69} a$, $\frac{1}{138} a^{17} - \frac{2}{23} a^{14} - \frac{25}{138} a^{13} + \frac{1}{23} a^{12} + \frac{13}{69} a^{11} + \frac{19}{46} a^{10} + \frac{35}{138} a^{9} - \frac{61}{138} a^{8} + \frac{21}{46} a^{7} + \frac{8}{23} a^{6} - \frac{8}{69} a^{5} - \frac{17}{138} a^{4} - \frac{7}{23} a^{3} + \frac{25}{138} a^{2} - \frac{7}{23} a - \frac{1}{3}$, $\frac{1}{138} a^{18} + \frac{5}{138} a^{14} - \frac{5}{46} a^{13} - \frac{31}{138} a^{12} + \frac{4}{23} a^{11} + \frac{16}{69} a^{10} - \frac{5}{69} a^{9} - \frac{11}{46} a^{8} - \frac{7}{23} a^{7} + \frac{1}{69} a^{6} + \frac{55}{138} a^{5} + \frac{3}{23} a^{4} + \frac{14}{69} a^{3} + \frac{1}{23} a^{2} + \frac{29}{138} a$, $\frac{1}{138} a^{19} + \frac{5}{23} a^{14} + \frac{3}{23} a^{13} - \frac{9}{46} a^{12} + \frac{17}{138} a^{11} + \frac{10}{69} a^{10} - \frac{37}{138} a^{9} - \frac{8}{23} a^{8} - \frac{3}{23} a^{7} - \frac{11}{46} a^{6} - \frac{35}{138} a^{5} - \frac{11}{23} a^{4} + \frac{15}{46} a^{3} - \frac{37}{138} a^{2} - \frac{10}{23} a + \frac{1}{3}$, $\frac{1}{138} a^{20} + \frac{2}{23} a^{14} - \frac{3}{46} a^{13} - \frac{13}{138} a^{12} - \frac{1}{138} a^{11} + \frac{5}{138} a^{10} + \frac{11}{23} a^{9} + \frac{5}{46} a^{8} - \frac{5}{46} a^{7} + \frac{29}{69} a^{6} - \frac{13}{46} a^{5} + \frac{11}{46} a^{4} - \frac{5}{69} a^{3} + \frac{9}{46} a^{2} + \frac{31}{138} a$, $\frac{1}{138} a^{21} + \frac{5}{23} a^{14} + \frac{4}{69} a^{13} - \frac{13}{138} a^{12} - \frac{31}{138} a^{11} - \frac{1}{2} a^{10} - \frac{6}{23} a^{9} + \frac{2}{23} a^{8} - \frac{59}{138} a^{7} - \frac{19}{46} a^{6} + \frac{5}{23} a^{5} + \frac{34}{69} a^{4} - \frac{15}{46} a^{3} + \frac{26}{69} a^{2} + \frac{21}{46} a$, $\frac{1}{276} a^{22} - \frac{1}{276} a^{16} + \frac{5}{138} a^{14} + \frac{7}{138} a^{13} + \frac{65}{276} a^{12} - \frac{7}{46} a^{11} + \frac{73}{276} a^{10} + \frac{15}{46} a^{9} + \frac{7}{46} a^{8} - \frac{67}{138} a^{7} - \frac{5}{12} a^{6} + \frac{3}{23} a^{5} + \frac{33}{92} a^{4} - \frac{1}{138} a^{3} - \frac{35}{92} a^{2} + \frac{19}{138} a$, $\frac{1}{12696} a^{23} + \frac{1}{1587} a^{22} + \frac{5}{1587} a^{21} - \frac{7}{3174} a^{20} - \frac{19}{6348} a^{19} + \frac{5}{6348} a^{18} - \frac{9}{4232} a^{17} - \frac{19}{6348} a^{16} + \frac{5}{3174} a^{15} + \frac{285}{2116} a^{14} - \frac{781}{12696} a^{13} - \frac{17}{1058} a^{12} + \frac{1397}{12696} a^{11} + \frac{605}{1587} a^{10} - \frac{1187}{6348} a^{9} + \frac{277}{1058} a^{8} + \frac{1749}{4232} a^{7} - \frac{205}{6348} a^{6} - \frac{4279}{12696} a^{5} + \frac{499}{2116} a^{4} - \frac{485}{12696} a^{3} - \frac{515}{1058} a^{2} - \frac{1135}{3174} a + \frac{19}{69}$, $\frac{1}{66742393983874202880378970179419048141740744013178063261937640293458500903596555237776} a^{24} + \frac{352035650962652946403816702828904375128031593549743009689019679989783437390966807}{16685598495968550720094742544854762035435186003294515815484410073364625225899138809444} a^{23} + \frac{8698913680475540269171271288785896922780630053770380844425283093322321601367007627}{5561866165322850240031580848284920678478395334431505271828136691121541741966379603148} a^{22} + \frac{1458093453491264909107597412853201858603954105156607188084770359445478296606510141}{4171399623992137680023685636213690508858796500823628953871102518341156306474784702361} a^{21} + \frac{118046647424216854026816459614521044792870006528531639901735299220986720979737659855}{33371196991937101440189485089709524070870372006589031630968820146729250451798277618888} a^{20} - \frac{35449422381267853394126402120098398211097482437546377798574155160504272293692049633}{33371196991937101440189485089709524070870372006589031630968820146729250451798277618888} a^{19} + \frac{177775809104017628809575991165873613017259926207418908140045618611664437697828765989}{66742393983874202880378970179419048141740744013178063261937640293458500903596555237776} a^{18} + \frac{12051739084269380093985258837250658152226247930596454248962758032000327711823169449}{11123732330645700480063161696569841356956790668863010543656273382243083483932759206296} a^{17} - \frac{4586876348020909211474959715911306579701523518046288393757068448646375609022502466}{1390466541330712560007895212071230169619598833607876317957034172780385435491594900787} a^{16} + \frac{32847389577790934223702864652290391252697507438306762716836694064934460221451503341}{11123732330645700480063161696569841356956790668863010543656273382243083483932759206296} a^{15} - \frac{11537376368117957016760325690938850600693058232129784321596919955490431259669328145877}{66742393983874202880378970179419048141740744013178063261937640293458500903596555237776} a^{14} + \frac{2412714525154310921360728719806645480611282711789505329479638675463448324817897845805}{16685598495968550720094742544854762035435186003294515815484410073364625225899138809444} a^{13} - \frac{13885878735602798744068005955903919081176105616819039361359489859465725738181475479287}{66742393983874202880378970179419048141740744013178063261937640293458500903596555237776} a^{12} - \frac{742026002650636068873871520498752501611311101149351769250812718297568999070790828573}{8342799247984275360047371272427381017717593001647257907742205036682312612949569404722} a^{11} + \frac{4745908813398279289520324228297277848573553789370913290419260362591875204521600482183}{33371196991937101440189485089709524070870372006589031630968820146729250451798277618888} a^{10} + \frac{2803482126605613845027178795680205457794697036383701130054735121106991949735478988575}{16685598495968550720094742544854762035435186003294515815484410073364625225899138809444} a^{9} + \frac{25922660082142166386147346708259136321395713506989574182569244688457710488864879318763}{66742393983874202880378970179419048141740744013178063261937640293458500903596555237776} a^{8} - \frac{3448269216448477815862497972413124967699626102698154916186927799638532764931657797187}{11123732330645700480063161696569841356956790668863010543656273382243083483932759206296} a^{7} - \frac{13239474454634076052734961144195905302985881105856670556377820549300554044882956957879}{66742393983874202880378970179419048141740744013178063261937640293458500903596555237776} a^{6} + \frac{924216058514083771624652321443272848328592465682313123685332977681732192974331227301}{11123732330645700480063161696569841356956790668863010543656273382243083483932759206296} a^{5} + \frac{3559114275383499960603040761009747386578901663794701109228405852072758604781707710093}{22247464661291400960126323393139682713913581337726021087312546764486166967865518412592} a^{4} - \frac{5048892428768341813817523944882294842959947362400578664433801669765011522948697611711}{16685598495968550720094742544854762035435186003294515815484410073364625225899138809444} a^{3} + \frac{6255372597372876873886751511397382958258785692271617577852926903003668229870381645405}{16685598495968550720094742544854762035435186003294515815484410073364625225899138809444} a^{2} - \frac{1369149505747151315036783969825617027653450552637579237676450916591384801651437908069}{2780933082661425120015790424142460339239197667215752635914068345560770870983189801574} a + \frac{422761081551694768271876599964102938379869236219033603128782180689422186805716837}{181365201043136420870595027661464804732991152209722997994395761667006795933686291407}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1817774689596528400000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 25 |
| The 25 conjugacy class representatives for $C_5^2$ |
| Character table for $C_5^2$ is not computed |
Intermediate fields
| 5.5.25411681.1, 5.5.372052421521.3, 5.5.372052421521.2, 5.5.372052421521.1, 5.5.372052421521.4, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{25}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 71 | Data not computed | ||||||