Normalized defining polynomial
\( x^{25} - 5 x^{24} - 160 x^{23} + 760 x^{22} + 10200 x^{21} - 46346 x^{20} - 341415 x^{19} + 1481655 x^{18} + 6679000 x^{17} - 27473160 x^{16} - 80350625 x^{15} + 308241235 x^{14} + 609685640 x^{13} - 2105459870 x^{12} - 2953591475 x^{11} + 8503890713 x^{10} + 9144688380 x^{9} - 18676720520 x^{8} - 17431228350 x^{7} + 17746925340 x^{6} + 17044842134 x^{5} - 1993468850 x^{4} - 3196341625 x^{3} + 104189315 x^{2} + 171719495 x - 9926699 \)
Invariants
| Degree: | $25$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[25, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4628037546532860960147412376577678523972281254827976226806640625=5^{40}\cdot 61^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $352.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1525=5^{2}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1525}(1,·)$, $\chi_{1525}(386,·)$, $\chi_{1525}(131,·)$, $\chi_{1525}(1156,·)$, $\chi_{1525}(1221,·)$, $\chi_{1525}(1351,·)$, $\chi_{1525}(461,·)$, $\chi_{1525}(81,·)$, $\chi_{1525}(851,·)$, $\chi_{1525}(916,·)$, $\chi_{1525}(1301,·)$, $\chi_{1525}(1046,·)$, $\chi_{1525}(156,·)$, $\chi_{1525}(1376,·)$, $\chi_{1525}(546,·)$, $\chi_{1525}(611,·)$, $\chi_{1525}(996,·)$, $\chi_{1525}(741,·)$, $\chi_{1525}(1071,·)$, $\chi_{1525}(241,·)$, $\chi_{1525}(306,·)$, $\chi_{1525}(691,·)$, $\chi_{1525}(436,·)$, $\chi_{1525}(1461,·)$, $\chi_{1525}(766,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{14} + \frac{1}{6} a^{13} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{2} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{14} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6}$, $\frac{1}{6} a^{18} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{19} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{1218} a^{20} - \frac{89}{1218} a^{19} - \frac{16}{609} a^{18} - \frac{17}{406} a^{17} - \frac{4}{609} a^{16} - \frac{33}{406} a^{15} - \frac{2}{609} a^{14} - \frac{52}{609} a^{13} - \frac{125}{1218} a^{12} + \frac{13}{58} a^{11} + \frac{89}{406} a^{10} + \frac{178}{609} a^{9} - \frac{89}{203} a^{8} - \frac{41}{87} a^{7} + \frac{373}{1218} a^{6} - \frac{260}{609} a^{5} + \frac{443}{1218} a^{4} + \frac{349}{1218} a^{3} - \frac{439}{1218} a^{2} - \frac{146}{609} a + \frac{307}{1218}$, $\frac{1}{1218} a^{21} - \frac{6}{203} a^{19} - \frac{19}{406} a^{18} - \frac{27}{406} a^{17} + \frac{1}{1218} a^{16} - \frac{43}{609} a^{15} + \frac{149}{1218} a^{14} - \frac{41}{203} a^{13} - \frac{148}{609} a^{12} + \frac{34}{203} a^{11} + \frac{55}{406} a^{10} - \frac{8}{87} a^{9} - \frac{32}{203} a^{8} + \frac{40}{203} a^{7} + \frac{200}{609} a^{6} + \frac{149}{406} a^{5} + \frac{197}{609} a^{4} + \frac{125}{406} a^{3} + \frac{19}{1218} a^{2} - \frac{103}{1218} a - \frac{41}{609}$, $\frac{1}{246036} a^{22} + \frac{1}{41006} a^{21} + \frac{1}{8484} a^{20} + \frac{7121}{123018} a^{19} + \frac{1331}{82012} a^{18} - \frac{7787}{123018} a^{17} + \frac{865}{61509} a^{16} - \frac{3020}{61509} a^{15} + \frac{12886}{61509} a^{14} - \frac{2539}{61509} a^{13} + \frac{59323}{246036} a^{12} + \frac{3071}{123018} a^{11} - \frac{23831}{82012} a^{10} + \frac{706}{20503} a^{9} - \frac{24713}{123018} a^{8} - \frac{52651}{123018} a^{7} - \frac{4509}{20503} a^{6} + \frac{8537}{20503} a^{5} - \frac{39043}{123018} a^{4} - \frac{31777}{123018} a^{3} + \frac{23293}{123018} a^{2} - \frac{2452}{20503} a + \frac{26111}{82012}$, $\frac{1}{492072} a^{23} - \frac{1}{492072} a^{22} + \frac{9}{23432} a^{21} - \frac{1}{4872} a^{20} - \frac{11229}{164024} a^{19} - \frac{12619}{492072} a^{18} + \frac{6357}{82012} a^{17} + \frac{4502}{61509} a^{16} + \frac{685}{246036} a^{15} + \frac{21187}{123018} a^{14} - \frac{47951}{492072} a^{13} + \frac{27403}{492072} a^{12} + \frac{3077}{492072} a^{11} - \frac{11553}{164024} a^{10} + \frac{82793}{246036} a^{9} - \frac{39745}{246036} a^{8} + \frac{5183}{35148} a^{7} - \frac{121283}{246036} a^{6} - \frac{947}{2929} a^{5} + \frac{122243}{246036} a^{4} + \frac{10167}{82012} a^{3} - \frac{53279}{123018} a^{2} + \frac{28915}{164024} a - \frac{63395}{164024}$, $\frac{1}{106953034143941568370431318247135167363918716095903818303532971982709977380254449570877853744} a^{24} - \frac{1450104737643814078866281926936466404541488500349041604654684637802553231720076628541}{2228188211332116007717319130148649320081639918664662881323603582973124528755301032726621953} a^{23} + \frac{735218872503712444479021002685120010331879640067447202375154084194068147734816663644}{954937804856621146164565341492278280034988536570569806281544392702767655180843299739980837} a^{22} - \frac{239078827618717103294069766467080955521783021814840320478450599303055341127244136612633}{636625203237747430776376894328185520023325691047046537521029595135178436787228866493320558} a^{21} + \frac{5287904572664530628771444746725975375386689582835918095513277594484379057169842962719131}{13369129267992696046303914780891895920489839511987977287941621497838747172531806196359731718} a^{20} - \frac{101515011894246568296711845684642400039901872558133694272896341133560421004234784530903383}{17825505690656928061738553041189194560653119349317303050588828663784996230042408261812975624} a^{19} + \frac{395204952956920298381254783302973483461097466337430399938918166569632413563409218822392687}{106953034143941568370431318247135167363918716095903818303532971982709977380254449570877853744} a^{18} + \frac{98804821521610299801285934318543878487658468658045613455942612233650503752206166229029577}{2546500812950989723105507577312742080093302764188186150084118380540713747148915465973282232} a^{17} - \frac{3280159243414791786598839033991886556036520207142795686474866470983712402499787201250079}{118049706560641907693632801597279434176510724167664258613171050753543021391009326237172024} a^{16} + \frac{1095589069627116906082157202528266871468467989221123476812745015624655210242319619706250245}{53476517071970784185215659123567583681959358047951909151766485991354988690127224785438926872} a^{15} + \frac{411414244465948301450304677066482564960321956653147207747683075164986552244197834358572333}{3688035660135916150704528215418454047031679865375993734604585240783102668284636192099236336} a^{14} - \frac{194401261338388464025821244364987246970117777239116704466681893636591842327230458429379825}{1909875609713242292329130682984556560069977073141139612563088785405535310361686599479961674} a^{13} - \frac{936874764696873214067105509132419503179587999945574123487331091524873954501564627537431771}{4456376422664232015434638260297298640163279837329325762647207165946249057510602065453243906} a^{12} - \frac{141014222161798654875995480334515433242472691062377096964175634746157540684693289009637433}{17825505690656928061738553041189194560653119349317303050588828663784996230042408261812975624} a^{11} - \frac{18970869723453099495651983429009557276985803478496022648537250629309044952921963248577487473}{106953034143941568370431318247135167363918716095903818303532971982709977380254449570877853744} a^{10} - \frac{6491409928277834428906360956160156076359891580124753780973274546317893231779876327659041307}{26738258535985392092607829561783791840979679023975954575883242995677494345063612392719463436} a^{9} + \frac{1245361274915811696414975911640880556784548602306931433316341507093819054362694934905666980}{6684564633996348023151957390445947960244919755993988643970810748919373586265903098179865859} a^{8} - \frac{2796220103166185960635496712662256819554590319740383174145413739430052989451095744479611895}{13369129267992696046303914780891895920489839511987977287941621497838747172531806196359731718} a^{7} + \frac{9384140164320692433785411408092386320252821966403126924136005206260574656417548682849546137}{53476517071970784185215659123567583681959358047951909151766485991354988690127224785438926872} a^{6} - \frac{7721668706613363484100302838155868165265962200096560415067293732424299246516807467210711843}{17825505690656928061738553041189194560653119349317303050588828663784996230042408261812975624} a^{5} + \frac{8927102489150759987250955527393671216341496117716056403699372417633337637267228336136735025}{26738258535985392092607829561783791840979679023975954575883242995677494345063612392719463436} a^{4} + \frac{2275607789654890167022076664357443446835553762417793079516245503161911069529969109172681937}{53476517071970784185215659123567583681959358047951909151766485991354988690127224785438926872} a^{3} - \frac{42496591602580828090939287944054400784847225165294468170217361161097676728114632274808594591}{106953034143941568370431318247135167363918716095903818303532971982709977380254449570877853744} a^{2} - \frac{8048676421617981336650132487351348751706733463982405066929779510499628314098379766259749}{65857779645284216976866575275329536554137140453142745260796165013983976219368503430343506} a + \frac{12947794045614164137850339769111020673943787703417150976030966575462127709969155904317760261}{35651011381313856123477106082378389121306238698634606101177657327569992460084816523625951248}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $24$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 775226479104812800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 25 |
| The 25 conjugacy class representatives for $C_5^2$ |
| Character table for $C_5^2$ is not computed |
Intermediate fields
| 5.5.5408531640625.1, 5.5.5408531640625.4, 5.5.13845841.1, 5.5.5408531640625.3, 5.5.390625.1, 5.5.5408531640625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{5}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||